Publications by authors named "Melanie Mermod"

SQUAMOSA promoter-binding protein-like 7 mediates copper deficiency response in the presence of high nitrogen even with the sufficient level of copper in Arabidopsis thaliana. Under copper (Cu) deficiency, accumulation of mRNA encoding two Cu/Zn superoxide dismutases, CSD1 and CSD2, is downregulated to save Cu for plastocyanin. This downregulation depends on miR398 and is under the control of SQUAMOSA promoter-binding protein-like7 (SPL7).

View Article and Find Full Text PDF

In Arabidopsis, a central regulator of copper (Cu) homeostasis is the transcription factor SQUAMOSA promoter binding protein-like7 (SPL7). Under Cu deficiency, SPL7 induces the expression of miR398, which suppresses the expression of the genes CSD1 and CSD2, which encode cytosolic and chloroplastic isoforms of Cu/Zn superoxide dismutase, respectively. Consequently, the limited Cu is preferentially assigned to plastocyanin, which is essential for photosynthetic electron transport.

View Article and Find Full Text PDF

The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers).

View Article and Find Full Text PDF

In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase).

View Article and Find Full Text PDF

The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper.

View Article and Find Full Text PDF