The now well described canonical mRNA translation initiation mechanism of mG 'cap' recognition by cap-binding protein eIF4E and assembly of the canonical pre-initiation complex consisting of scaffolding protein eIF4G and RNA helicase eIF4A has historically been thought to describe all cellular mRNA translation. However, the past decade has seen the discovery of alternative mechanisms to canonical eIF4E mediated mRNA translation initiation. Studies have shown that non-canonical alternate mechanisms of cellular mRNA translation initiation, whether cap-dependent or independent, serve to provide selective translation of mRNAs under cell physiological and pathological stress conditions.
View Article and Find Full Text PDFInherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development.
View Article and Find Full Text PDFThe overall goal of the annual Transdisciplinary Research in Energetics and Cancer (TREC) Training Workshop is to provide transdisciplinary training for scientists in energetics and cancer and clinical care. The 2022 Workshop included 27 early-to-mid career investigators (trainees) pursuing diverse TREC research areas in basic, clinical, and population sciences. The 2022 trainees participated in a gallery walk, an interactive qualitative program evaluation method, to summarize key takeaways related to program objectives.
View Article and Find Full Text PDFAtherosclerosis and obesity share pathological features including inflammation mediated by innate and adaptive immune cells. LXRα plays a central role in the transcription of inflammatory and metabolic genes. LXRα is modulated by phosphorylation at serine 196 (LXRα pS196), however, the consequences of LXRα pS196 in hematopoietic cell precursors in atherosclerosis and obesity have not been investigated.
View Article and Find Full Text PDFNon-communicable diseases (NCDs) are medical conditions that, by definition, are non-infectious and non-transmissible among people. Much of current NCDs are generally due to genetic, behavioral, and metabolic risk factors that often include excessive alcohol consumption, smoking, obesity, and untreated elevated blood pressure, and share many common signal transduction pathways. Alterations in cell and physiological signaling and transcriptional control pathways have been well studied in several human NCDs, but these same pathways also regulate expression and function of the protein synthetic machinery and mRNA translation which have been less well investigated.
View Article and Find Full Text PDFFGFR3 alterations (mutations or translocation) are among the most frequent genetic events in bladder carcinoma. They lead to an aberrant activation of FGFR3 signaling, conferring an oncogenic dependence, which we studied here. We discovered a positive feedback loop, in which the activation of p38 and AKT downstream from the altered FGFR3 upregulates mRNA levels and stabilizes MYC protein, respectively, leading to the accumulation of MYC, which directly upregulates expression by binding to active enhancers upstream from Disruption of this FGFR3/MYC loop in bladder cancer cell lines by treatment with FGFR3, p38, AKT, or BET bromodomain inhibitors (JQ1) preventing transcription decreased cell viability and tumor growth A relevance of this loop to human bladder tumors was supported by the positive correlation between and levels in tumors bearing mutations, and the decrease in FGFR3 and MYC levels following anti-FGFR treatment in a PDX model bearing an mutation.
View Article and Find Full Text PDF