Background: The legume cowpea ( L.) is extensively grown in sub-Saharan Africa. Cowpea, like many legumes has proved recalcitrant to plant transformation.
View Article and Find Full Text PDFCowpea ( (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance.
View Article and Find Full Text PDFBackground: Application of apomixis, or asexual seed formation, in crop breeding would allow rapid fixation of complex traits, economizing improved crop delivery. Identification of apomixis genes is confounded by the polyploid nature, high genome complexity and lack of genomic sequence integration with reproductive tissue transcriptomes in most apomicts.
Results: A genomic and transcriptomic resource was developed for Hieracium subgenus Pilosella (Asteraceae) which incorporates characterized sexual, apomictic and mutant apomict plants exhibiting reversion to sexual reproduction.
In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments.
View Article and Find Full Text PDFBackground And Aims: Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis.
View Article and Find Full Text PDFApomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis.
View Article and Find Full Text PDFIn plant species, control of flowering time is an important factor for adaptation to local natural environments. The Vrn1 , CO , FT1 and CK2α genes are key components in the flowering-specific signaling pathway of grass species. Meadow fescue is an agronomically important forage grass species, which is naturally distributed across Europe and Western Asia.
View Article and Find Full Text PDFChloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads.
View Article and Find Full Text PDFBackground: Single nucleotide polymorphisms (SNPs) provide essential tools for the advancement of research in plant genomics, and the development of SNP resources for many species has been accelerated by the capabilities of second-generation sequencing technologies. The current study aimed to develop and use a novel bioinformatic pipeline to generate a comprehensive collection of SNP markers within the agriculturally important pasture grass tall fescue; an outbreeding allopolyploid species displaying three distinct morphotypes: Continental, Mediterranean and rhizomatous.
Results: A bioinformatic pipeline was developed that successfully identified SNPs within genotypes from distinct tall fescue morphotypes, following the sequencing of 414 polymerase chain reaction (PCR) - generated amplicons using 454 GS FLX technology.
Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.
View Article and Find Full Text PDFPerennial ryegrass is a globally cultivated obligate outbreeding diploid species (2n = 2x = 14) which is subjected to periods of waterlogging stress due to flood irrigation during winter and the lead-up to summer. Reduction of oxygen supply to root systems due to waterlogging produces consequent deleterious effects on plant performance. Framework genetic maps for a large-scale genetic mapping family [F₁(NA(x) × AU₆)] were constructed containing 91 simple sequence repeat and 24 single nucleotide polymorphism genetic markers.
View Article and Find Full Text PDFBackground: The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.
View Article and Find Full Text PDFBackground: White clover (Trifolium repens L.) is an outbreeding allotetraploid species and an important forage legume in temperate grassland agriculture. Comparison of sub-genome architecture and study of nucleotide sequence diversity within allopolyploids provides insight into evolutionary divergence mechanisms, and is also necessary for the development of whole-genome sequencing strategies.
View Article and Find Full Text PDFAllotetraploid (2n = 4x = 32) white clover (Trifolium repens L.) is the most commonly cultivated legume component of temperate pastures, sown in swards with a companion grass species. Genetic control of growth performance of white clover on saline land is highly important for dairy industries, due to increasing soil salinity problems.
View Article and Find Full Text PDFThe combination of homologous, homoeologous and paralogous classes of sequence variation presents major challenges for SNP discovery in outbreeding allopolyploid species. Previous in vitro gene-associated SNP discovery studies in the allotetraploid forage legume white clover (Trifolium repens L.) were vulnerable to such effects, leading to prohibitive levels of attrition during SNP validation.
View Article and Find Full Text PDF