Annu Int Conf IEEE Eng Med Biol Soc
June 2012
Phase contrast MRI is a powerful tool for blood flow quantification. Conventional cartesian phase contrast sequences require lengthy acquisition on the order of several minutes. Spiral acquisition phase-contrast (PC) MRI is capable of reducing the TR and TE in order to minimize flow dependent artifacts and total imaging time.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Tagged magnetic resonance imaging (MRI) has the ability to directly and non-invasively alter tissue magnetization and produce tags on the deforming tissue [1], [2]. Since its development, the Spatial Modulation of Magnetization (SPAMM) [2] tagging pulse sequence has been widely available and is the most commonly used technique for producing sinusoidal tag patterns. However, SPAMM suffers from tag fading which occurs in the later phases of the cardiac cycle.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
A real-time Late Gadolinium Enhancement (LGE) MRI technique (free breathing and non-gated) is presented for detection of myocardial scars. Conventional LGE imaging methods currently in use are applied in conjunction with breath-hold and, thus, are difficult to use in patients with cardiac disease and may lead to motion artifacts. Additionally, conventional techniques involve ECG gating, which is problematic in patients with arrhythmias requiring multiple breath holds and use of arrhythmia rejection techniques.
View Article and Find Full Text PDFBackground: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function.
Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors.
To enhance the clinical value of coronary magnetic resonance angiography (MRA), high-relaxivity contrast agents have recently been used at 3T. Here we examine a uniform bilateral shadowing artifact observed along the coronary arteries in MRA images collected using such a contrast agent. Simulations were performed to characterize this artifact, including its origin, to determine how best to mitigate this effect, and to optimize a data acquisition/injection scheme.
View Article and Find Full Text PDFPurpose: To compare contrast-enhanced micro-computed tomography (microCT) and nonenhanced respiratory-triggered magnetic resonance imaging (MRI) in an animal model of metastatic pheochromocytoma. Animal models are becoming important in the study of cancer treatment and imaging is useful in minimizing the number of animals needed and reducing costs associated with autopsies. However, the choice of imaging modality is still evolving.
View Article and Find Full Text PDFFibrous cap thickness is often considered as diagnostic of the degree of plaque instability. Necrotic core area (Core(area)) and the arterial remodeling index (Remod(index)), on the other hand, are difficult to use as clinical morphological indexes: literature data show a wide dispersion of Core(area) thresholds above which plaque becomes unstable. Although histopathology shows a strong correlation between Core(area) and Remod(index), it remains unclear how these interact and affect peak cap stress (Cap(stress)), a known predictor of rupture.
View Article and Find Full Text PDFPurpose: To determine optimal conditions for precise measurement of arterial input function (AIFs) in dynamic susceptibility contrast (DSC) perfusion MRI.
Materials And Methods: Magnitude-based (DeltaR(2)*) and phase-based (Deltaphi) AIFs were numerically simulated for several doses and baseline MRI noise levels [SNR(I(0))]. Random noise (1000 realizations) was added to real/imaginary MRI signals (derived from an internal carotid AIF), and AIF signal, noise, and signal-to-noise ratio (SNR) were determined.
Cerebral perfusion imaging using dynamic susceptibility contrast (DSC) has been the subject of considerable research and shows promise for basic science and clinical use. In DSC, the MRI signals in brain tissue and feeding arteries are monitored dynamically in response to a bolus injection of paramagnetic agents, such as gadolinium (Gd) chelates. DSC has the potential to allow quantitative imaging of parameters such as cerebral blood flow (CBF) with a high signal-to-noise ratio (SNR) in a short scan time; however, quantitation depends critically on accurate and precise measurement of the arterial input function (AIF).
View Article and Find Full Text PDF