Publications by authors named "Melanie Klasen-Memmer"

Many ferroelectric nematic liquid crystals, like one of the archetype materials, DIO, do not have a direct paraelectric N to ferroelectric N phase transition, but exhibit yet another phase between N and N. This phase has recently been proposed to be antiferroelectric, with a layered structure of alternating polarization normal to the average director and is sometimes referred to as Smectic Z (SmZ). We have examined the SmZ phase in circularly rubbed (CR) cells, known to discriminate between the polar N and the non-polar N phase from the configuration of disclination lines formed.

View Article and Find Full Text PDF

We demonstrate an exceptional ability of a high-polarization 3D ferroelectric liquid to form freely suspended fluid fibers at room temperature. Unlike fluid threads in modulated smectics and columnar phases, where translational order is a prerequisite for forming liquid fibers, recently discovered ferroelectric nematic forms fibers with solely orientational molecular order. Additional stabilization mechanisms based on the polar nature of the mesophase are required for this.

View Article and Find Full Text PDF

We present a new ferroelectric nematic material, 4-((4'-((trans)-5-ethyloxan-2-yl)-2',3,5,6'-tetrafluoro-[1,1'-biphenyl]-4-yl)difluoromethoxy)-2,6-difluorobenzonitrile (AUUQU-2-N) and its higher homologues, the molecular structures of which include fluorinated building blocks, an oxane ring, and a terminal cyano group, all contributing to a large molecular dipole moment of about 12.5 D. We observed that AUUQU-2-N has three distinct liquid crystal phases, two of which were found to be polar phases with a spontaneous electric polarization P of up to 6 µC cm.

View Article and Find Full Text PDF

We report the observation of the smectic A, a liquid crystal phase of the ferroelectric nematic realm. The smectic A is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director.

View Article and Find Full Text PDF

Nematics with a broken polar symmetry are one of the fascinating recent discoveries in the field of soft matter. High spontaneous polarisation and the fluidity of the ferroelectric nematic phase make such materials attractive for future applications and interesting for fundamental research. Here, we explore the polar and mechanical properties of a room-temperature ferroelectric nematic and its behaviour in a magnetic field.

View Article and Find Full Text PDF

New liquid crystals with very low viscosity, good mesophase behavior, and high reliability are necessary to achieve the breakthrough from flat computer monitors to large displays for television. Fluorine plays a decisive role not only because of the polarity it induces in organic molecules but also because of its low polarizability and weak propensity for ion solvation. In addition, subtle stereoelectronic effects in fluorine-containing liquid crystals influence material properties and allow these to be tuned to some extent to achieve the desired outcome.

View Article and Find Full Text PDF