Publications by authors named "Melanie Kaeser"

The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection.

View Article and Find Full Text PDF

Objective: Medial thalamotomies were introduced in the late 1940s. Pain relief was shown to be achieved for all body locations. With some exceptions, these early relatively small series showed frequent, more or less complete recurrence of the original pain.

View Article and Find Full Text PDF

Regaining arm control is a top priority for people with paralysis. Unfortunately, the complexity of the neural mechanisms underlying arm control has limited the effectiveness of neurotechnology approaches. Here, we exploited the neural function of surviving spinal circuits to restore voluntary arm and hand control in three monkeys with spinal cord injury, using spinal cord stimulation.

View Article and Find Full Text PDF

Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species.

View Article and Find Full Text PDF

Epidural electrical stimulation (EES) of lumbosacral sensorimotor circuits improves leg motor control in animals and humans with spinal cord injury (SCI). Upper-limb motor control involves similar circuits, located in the cervical spinal cord, suggesting that EES could also improve arm and hand movements after quadriplegia. However, the ability of cervical EES to selectively modulate specific upper-limb motor nuclei remains unclear.

View Article and Find Full Text PDF

Proprioceptive feedback is a critical component of voluntary movement planning and execution. Neuroprosthetic technologies aiming at restoring movement must interact with it to restore accurate motor control. Optimization and design of such technologies depends on the availability of quantitative insights into the neural dynamics of proprioceptive afferents during functional movements.

View Article and Find Full Text PDF

Non-invasive reversible perturbation techniques of brain output such as continuous theta burst stimulation (cTBS), commonly used to modulate cortical excitability in humans, allow investigation of possible roles in functional recovery played by distinct intact cortical areas following stroke. To evaluate the potential of cTBS, the behavioural effects of this non-invasive transient perturbation of the hand representation of the primary motor cortex (M1) in non-human primates (two adult macaques) were compared with an invasive focal transient inactivation based on intracortical microinfusion of GABA-A agonist muscimol. The effects on the contralateral arm produced by cTBS or muscimol were directly compared based on a manual dexterity task performed by the monkeys, the "reach and grasp" drawer task, allowing quantitative assessment of the grip force produced between the thumb and index finger and exerted on the drawer's knob.

View Article and Find Full Text PDF

Recovery of reaching and grasping ability is the priority for people with cervical spinal cord injury (SCI). Epidural electrical stimulation (EES) has shown promising results in improving motor control after SCI in various animal models and in humans. Notably, the application of stimulation bursts with spatiotemporal sequences that reproduce the natural activation of motoneurons restored skilled leg movements in rodent and nonhuman primate models of SCI.

View Article and Find Full Text PDF

Patients with supernumerary phantom limb report experiencing an additional limb duplicating its physical counterpart, usually following a stroke with sensorimotor disturbances. Here, we report a short-lasting case of a right upper supernumerary phantom limb with unusual visuomotor features in a healthy participant during a pure Jacksonian motor seizure unexpectedly induced by continuous Theta-Burst Stimulation over the left primary motor cortex. Electromyographic correlates of the event followed the phenomenological pattern of sudden appearance and brutal dissolution of the phantom, adding credit to the hypothesis that supernumerary phantom limb results from a dynamic resolution of conflictual multimodal information.

View Article and Find Full Text PDF

From a case study, we describe the impact of unilateral lesion of the hand area in the primary motor cortex (M1) on manual dexterity and the role of the intact contralesional M1 in long-term functional recovery. An adult macaque monkey performed two manual dexterity tasks: (i) "modified Brinkman board" task, assessed simple precision grip versus complex precision grip, the latter involved a hand postural adjustment; (ii) "modified Klüver board" task, assessed movements ranging from power grip to precision grip, pre-shaping and grasping. Two consecutive unilateral M1 lesions targeted the hand area of each hemisphere, the second lesion was performed after stable, though incomplete, functional recovery from the primary lesion.

View Article and Find Full Text PDF

Background The present study aimed to determine and confront hand preference (hand chosen in priority to perform a manual dexterity task) and hand dominance (hand with best motor performance) in eight macaques (Macaca fascicularis) and in 20 human subjects (10 left-handers and 10 right-handers). Methods Four manual dexterity tests have been executed by the monkeys, over several weeks during learning and stable performance phases (in controlled body position): the modified Brinkman board, the reach and grasp drawer, the tube and the bimanual board tasks. Three behavioral tests, adapted versions from the monkeys tasks (modified Brinkman board, tube and bimanual board tasks), as well as a handedness questionnaire, have been conducted in human subjects.

View Article and Find Full Text PDF

In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip.

View Article and Find Full Text PDF

The corticospinal (CS) tract is the anatomical support of the exquisite motor ability to skillfully manipulate small objects, a prerogative mainly of primates(1). In case of lesion affecting the CS projection system at its origin (lesion of motor cortical areas) or along its trajectory (cervical cord lesion), there is a dramatic loss of manual dexterity (hand paralysis), as seen in some tetraplegic or hemiplegic patients. Although there is some spontaneous functional recovery after such lesion, it remains very limited in the adult.

View Article and Find Full Text PDF

Although the arrangement of the corticospinal projection in primates is consistent with a more prominent role of the ipsilateral motor cortex on proximal muscles, rather than on distal muscles involved in manual dexterity, the role played by the primary motor cortex on the control of manual dexterity for the ipsilateral hand remains a matter a debate, either in the normal function or after a lesion. We, therefore, tested the impact of permanent unilateral motor cortex lesion on the manual dexterity of the ipsilateral hand in 11 macaque monkeys, within a time window of 60 days post-lesion. For comparison, unilateral reversible pharmacological inactivation of the motor cortex was produced in an additional monkey.

View Article and Find Full Text PDF

Background: Although cell therapy is a promising approach after cerebral cortex lesion, few studies assess quantitatively its behavioral gain in nonhuman primates. Furthermore, implantations of fetal grafts of exogenous stem cells are limited by safety and ethical issues.

Objective: To test in nonhuman primates the transplantation of autologous adult neural progenitor cortical cells with assessment of functional outcome.

View Article and Find Full Text PDF

We have demonstrated that cortical cell autografts might be a useful therapy in two monkey models of neurological disease: motor cortex lesion and Parkinson's disease. However, the origin of the useful transplanted cells obtained from cortical biopsies is not clear. In this report we describe the expression of doublecortin (DCX) in these cells based on reverse-transcription polymerase chain reaction (RT-PCR) and immunodetection in the adult primate cortex and cell cultures.

View Article and Find Full Text PDF

Manual dexterity, a prerogative of primates, is under the control of the corticospinal (CS) tract. Because 90-95% of CS axons decussate, it is assumed that this control is exerted essentially on the contralateral hand. Consistently, unilateral lesion of the hand representation in the motor cortex is followed by a complete loss of dexterity of the contralesional hand.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: