Publications by authors named "Melanie Jungblut"

Purpose: Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers.

Experimental Design: We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues.

View Article and Find Full Text PDF

CAR T cell research in solid tumors often lacks spatiotemporal information and therefore, there is a need for a molecular tomography to facilitate high-throughput preclinical monitoring of CAR T cells. Furthermore, a gap exists between macro- and microlevel imaging data to better assess intratumor infiltration of therapeutic cells. We addressed this challenge by combining 3D µComputer tomography bioluminescence tomography (µCT/BLT), light-sheet fluorescence microscopy (LSFM) and cyclic immunofluorescence (IF) staining.

View Article and Find Full Text PDF

Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies).

View Article and Find Full Text PDF
Article Synopsis
  • The formation of the cerebellum involves well-coordinated development of specific cell types, including astrocytes and oligodendrocytes from progenitor cells with astroglial-like characteristics during mouse postnatal development.
  • A specific subset of astroglial-like progenitors in the prospective white matter (PWM) can produce both astrocytes and interneurons, but distinguishing their fates has been challenging until now.
  • The discovery of astrocyte cell surface antigen-2 (ACSA-2) serves as a new marker that, along with GLAST, allows researchers to differentiate between two distinct groups of postnatal progenitors: one committed to producing astrocytes and another that is multipotent and can
View Article and Find Full Text PDF

Background: Isolation of neurons from the adult mouse CNS is important in order to study their gene expression during development or the course of different diseases.

New Methods: Here we present two different methods for the enrichment or isolation of neurons from adult mouse CNS. These methods: are either based on flow cytometry sorting of eYFP expressing neurons, or by depletion of non-neuronal cells by sorting with magnetic-beads.

View Article and Find Full Text PDF

Astrocytes are the most abundant cell type of the central nervous system and cover a broad range of functionalities. We report here the generation of a novel monoclonal antibody, anti-astrocyte cell surface antigen-2 (Anti-ACSA-2). Flow cytometry, immunohistochemistry and immunocytochemistry revealed that Anti-ACSA-2 reacted specifically with a not yet identified glycosylated surface molecule of murine astrocytes at all developmental stages.

View Article and Find Full Text PDF

Astrocytes show large morphological and functional heterogeneity and are involved in many aspects of neural function. Progress in defining astrocyte subpopulations has been hampered by the lack of a suitable antibody for their direct detection and isolation. Here, we describe a new monoclonal antibody, ACSA-1, which was generated by immunization of GLAST1 knockout mice.

View Article and Find Full Text PDF

Multi-unit recording from neuronal networks cultured on microelectrode arrays (MEAs) is a widely used approach to achieve basic understanding of network properties, as well as the realization of cell-based biosensors. However, network formation is random under primary culture conditions, and the cellular arrangement often performs an insufficient fit to the electrode positions. This results in the successful recording of only a small fraction of cells.

View Article and Find Full Text PDF

The preparation of single-cell suspensions from tissues is an important prerequisite for many experiments in cellular research. The process of dissociating whole organs requires specific parameters in order to obtain a high number of viable cells in a reproducible manner. The gentleMACS Dissociator optimizes this task with a simple, practical protocol.

View Article and Find Full Text PDF

Single-cell suspensions are a prerequisite for experiments in cell separation, cell analysis and cell culture. To avoid tedious and often painful manual dissociations the gentleMACS Dissociator allows one to dissociate tissue very efficiently under controlled and reproducible conditions. The gentleMACS Dissociator can optimally dissociate mouse spleen, combining timesaving and standardization with user-safety.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong1r7vhfh9542dn0bods6d08ekpi9i4a7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once