Publications by authors named "Melanie J Percy"

Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, and The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation.

View Article and Find Full Text PDF

External quality assurance (EQA) programs are vital to ensure high quality and standardized results in molecular diagnostics. It is important that EQA for quantitative analysis takes into account the variation in methodology. Results cannot be expected to be more accurate than limits of the technology used, and it is essential to recognize factors causing substantial outlier results.

View Article and Find Full Text PDF

Background: The role of the hypoxia signaling pathway in the pathogenesis of pheochromocytoma/paraganglioma (PPGL)-polycythemia syndrome has been elucidated. Novel somatic mutations in hypoxia-inducible factor type 2A (HIF2A) and germline mutations in prolyl hydroxylase type 1 and type 2 (PHD1 and PHD2) have been identified to cause upregulation of the hypoxia signaling pathway and its target genes including erythropoietin (EPO) and its receptor (EPOR). However, in a minority of patients presenting with this syndrome, the genetics and molecular pathogenesis remain unexplained.

View Article and Find Full Text PDF

We report herein on our observation of recessive congenital methemoglobinemia (type I), an autosomal recessive disorder, in immediate generations (in a mother and her daughter). Molecular analysis revealed a mechanism of inheritance not reported previously, despite the high probability of occurrence in autosomal recessive disorders. This report is also the first publication describing an extremely rare mutation (Arg50Gln) causing this disorder in the Turkish population.

View Article and Find Full Text PDF

Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital.

View Article and Find Full Text PDF

DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias.

View Article and Find Full Text PDF

The myeloproliferative neoplasms (MPN) are clonal, hematological malignancies that include polycythemia vera, essential thrombocythemia and primary myelofibrosis. While most cases of MPN are sporadic in nature, a familial pattern of inheritance is well recognised. The phenotype and status of the commonly acquired JAK2 V617F, CALR exon 9 and MPL W515L/K mutations in affected individuals from a consecutive series of ten familial MPN (FMPN) kindred are described.

View Article and Find Full Text PDF

The transcription of the erythropoietin () gene is tightly regulated by the hypoxia response pathway to maintain oxygen homeostasis. Elevations in serum EPO level may be reflected in an augmentation in the red cell mass, thereby causing erythrocytosis. Studies on erythrocytosis have provided insights into the function of the oxygen-sensing pathway and the critical proteins involved in the regulation of transcription.

View Article and Find Full Text PDF

Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding.

View Article and Find Full Text PDF

Neutrophil lifespan and function are regulated by hypoxia via components of the hypoxia inducible factor (HIF)/von Hippel Lindau/hydroxylase pathway, including specific roles for HIF-1α and prolyl hydroxylase-3. HIF-2α has both distinct and overlapping biological roles with HIF-1α and has not previously been studied in the context of neutrophil biology. We investigated the role of HIF-2α in regulating key neutrophil functions.

View Article and Find Full Text PDF

The central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass.

View Article and Find Full Text PDF

Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR).

View Article and Find Full Text PDF

During recent years, the increasing knowledge of genetic and physiological changes in polycythemia vera (PV) and of different types of congenital erythrocytosis has led to fundamental changes in recommendations for the diagnostic approach to patients with erythrocytosis. Although widely accepted for adult patients this approach may not be appropriate with regard to children and adolescents affected by erythrocytosis. The "congenital erythrocytosis" working group established within the framework of the MPN&MPNr-EuroNet (COST action BM0902) addressed this question in a consensus finding process and developed a specific algorithm for the diagnosis of erythrocytosis in childhood and adolescence which is presented here.

View Article and Find Full Text PDF

The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO).

View Article and Find Full Text PDF

Background: Cytochrome b5 reductase (CB5R) deficiency is a recessively inherited autosomal disorder that is either benign (type I) or associated with severe neurological problems (type II). Specific mutations in the CYB5R gene are not exclusive to each type.

Observation: Two cyanotic children with developmental delay but with slow progression were investigated for CB5R deficiency.

View Article and Find Full Text PDF

Congenital or familial erythrocytosis/polycythemia can have many causes, and an emerging cause is genetic disruption of the oxygen-sensing pathway that regulates the () gene. More specifically, recent studies have identified erythrocytosis-associated mutations in the gene, which encodes for Hypoxia Inducible Factor-2α (HIF-2α), as well as in two genes that encode for proteins that regulate it, Prolyl Hydroxylase Domain protein 2 (PHD2) and the von Hippel Lindau tumor suppressor protein (VHL). We report here the identification of two new heterozygous missense mutations, M535T and F540L, both associated with erythrocytosis.

View Article and Find Full Text PDF

Idiopathic erythrocytosis (IE) comprises a heterogeneous group of disorders characterized by hyperplasia of the erythroid lineage; however, in many cases, the molecular basis remains undetermined. Serum erythropoietin (EPO) levels can be raised, normal, or reduced, suggesting that there are at least two underlying etiologies involving either the control of EPO production or modulation of EPO-induced signaling. EPO production is regulated by the oxygen-sensing pathway via the hypoxia inducible transcription factor (HIF) complex.

View Article and Find Full Text PDF
Article Synopsis
  • Ubiquitin Carboxyl-Terminal Hydrolase-L1 (UCH-L1) plays a significant role in the nervous system and is linked to neurological disorders, as well as exhibiting variable effects in different cancers, including lung cancer.
  • In a study examining NSCLC cell lines, UCH-L1 expression was manipulated using siRNA, revealing that reduced UCH-L1 led to increased cell death in adenocarcinoma but decreased metastatic potential in squamous cell carcinoma.
  • Immunohistochemical analysis indicated UCH-L1 was more highly expressed in squamous cell carcinoma compared to adenocarcinoma, suggesting potential as a prognostic marker in advanced lung cancer stages.
View Article and Find Full Text PDF

We describe a high oxygen affinity hemoglobin (Hb) variant (Hb Vanderbilt) as a result of a heterozygous novel base change from T to A at codon 89 (AGT>AGA) leading to an amino acid change from serine to arginine.

View Article and Find Full Text PDF

The hypoxia-inducible factors (HIFs; isoforms HIF-1α, HIF-2α, HIF-3α) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF.

View Article and Find Full Text PDF

Because of the central role that red blood cells play in the delivery of oxygen to tissues of the body, red blood cell mass must be controlled at precise levels. The glycoprotein hormone erythropoietin (EPO) regulates red blood cell mass. EPO transcription, in turn, is regulated by a distinctive oxygen-sensing mechanism.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) family of transcription factors directs a coordinated cellular response to hypoxia that includes the transcriptional regulation of a number of metabolic enzymes. Chuvash polycythemia (CP) is an autosomal recessive human disorder in which the regulatory degradation of HIF is impaired, resulting in elevated levels of HIF at normal oxygen tensions. Apart from the polycythemia, CP patients have marked abnormalities of cardiopulmonary function.

View Article and Find Full Text PDF

Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation.

View Article and Find Full Text PDF

The 46/1 JAK2 haplotype predisposes to V617F-positive myeloproliferative neoplasms, but the underlying mechanism is obscure. We analyzed essential thrombocythemia patients entered into the PT-1 studies and, as expected, found that 46/1 was overrepresented in V617F-positive cases (n = 404) versus controls (n = 1492, P = 3.9 x 10(-11)).

View Article and Find Full Text PDF