Airway inflammation is a hallmark of asthma, and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression necessary for the proper function of cellular processes. We tested the hypothesis that differences between healthy and asthmatic subjects may be a result of distinct miRNA cellular profiles that lead to differential regulation of inflammatory genes.
View Article and Find Full Text PDFThe purpose of this review is to provide an update of the current understanding on the role of microRNAs in mediating genetic responses to air pollutants and to contemplate on how these responses ultimately control susceptibility to ambient air pollution. Morbidity and mortality attributable to air pollution continues to be a growing public health concern worldwide. Despite several studies on the health effects of ambient air pollution, underlying molecular mechanisms of susceptibility and disease remain elusive.
View Article and Find Full Text PDFBackground: Particulate matter (PM) is associated with adverse airway health effects; however, the underlying mechanism in disease initiation is still largely unknown. Recently, microRNAs (miRNAs; small noncoding RNAs) have been suggested to be important in maintaining the lung in a disease-free state through regulation of gene expression. Although many studies have shown aberrant miRNA expression patterns in diseased versus healthy tissue, little is known regarding whether environmental agents can induce such changes.
View Article and Find Full Text PDFGenomic instability in colorectal cancer is categorized into two distinct classes: chromosome instability (CIN) and microsatellite instability (MSI). MSI is the result of mutations in the mismatch repair (MMR) machinery, whereas CIN is often thought to be associated with a disruption in the APC gene. Clinical data has recently shown the presence of heterozygous mutations in ATR and Chk1 in human cancers that exhibit MSI, suggesting that those mutations may contribute to tumorigenesis.
View Article and Find Full Text PDFDNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site.
View Article and Find Full Text PDF