Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials.
View Article and Find Full Text PDFSclereid formation in addition to or in gaps of fragmented fibre rings is common in dicotyledonous plant stems. Whether this sclereid formation is force-triggered remains open so far. In fruit peduncles of several Malus species as modified plant stems, for example, the persistent fibre ring is displaced to the centre by formation of cortex parenchyma during growth.
View Article and Find Full Text PDF• Premise of the study: Martyniaceae are characterized by capsules with two upwardly curved, horn-shaped extensions representing morphologically specialized epizoochorous fruits. Because the capsules are assumed to cling to hooves and ankles of large mammals, fiber arrangement and tissue combinations within the endocarp ensuring proper attachment to the vector's feet during transport are of particular interest. In this first detailed anatomical investigation, the functional adaptation of the fruits and their implications for the specific dispersal mode are provided.
View Article and Find Full Text PDFBackground And Aims: Apple (Malus) fruit peduncles are highly modified stems with limited secondary growth because fruit ripening lasts only one season. They must reliably connect rather heavy fruits to the branch and cope with increasing fruit weight, which induces dynamic stresses under oscillating wind loads. This study focuses on tissue modification of these small, exposed structures during fruit development.
View Article and Find Full Text PDF