Publications by authors named "Melanie Hocine"

Neuronal nerve processes in the tumor microenvironment were highlighted recently. However, the origin of intra-tumoral nerves remains poorly known, in part because of technical difficulties in tracing nerve fibers via conventional histological preparations. Here, we employ three-dimensional (3D) imaging of cleared tissues for a comprehensive analysis of sympathetic innervation in a murine model of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

VPS35 is a core component of the retromer complex involved in familial forms of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In mice, VPS35 is expressed during early brain development. However, previous studies have reported that VPS35 activity is largely dispensable for normal neuronal development and initial elaboration of axonal projections.

View Article and Find Full Text PDF

The corpus callosum is the largest bundle of commissural fibres that transfer information between the two cerebral hemispheres. Callosal projection neurons (CPNs) are a diverse population of pyramidal neurons within the neocortex that mainly interconnect homotopic regions of the opposite cortices. Nevertheless, some CPNs are involved in heterotopic projections between distinct cortical areas or to subcortical regions such as the striatum.

View Article and Find Full Text PDF

The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circuit, which raises a key developmental question, is that the outgoing trajectory of post-crossing CCAs is mirror-symmetric with the incoming trajectory of pre-crossing axons.

View Article and Find Full Text PDF

Local endocytic events involving receptors for axon guidance cues play a central role in controlling growth cone behaviour. Yet, little is known about the fate of internalized receptors, and whether the sorting events directing them to distinct endosomal pathways control guidance decisions. Here, we show that the receptor Plexin-D1 contains a sorting motif that interacts with the adaptor protein GIPC1 to facilitate transport to recycling endosomes.

View Article and Find Full Text PDF

TRO40303 is cytoprotective compound that was shown to reduce infarct size in preclinical models of myocardial infarction. It targets mitochondria, delays mitochondrial permeability transition pore (mPTP) opening and reduces oxidative stress in cardiomyocytes submitted to ischemia/reperfusion in vitro. Because the involvement of the mitochondria and the mPTP has been demonstrated in chronic as well as acute hepatitis, we investigated the potential of TRO40303 to prevent hepatocyte injury.

View Article and Find Full Text PDF

The semaphorin guidance molecules and their receptors, the plexins, are often inappropriately expressed in cancers. However, the signaling processes mediated by plexins in tumor cells are still poorly understood. Here, we demonstrate that the Semaphorin 3E (Sema3E) regulates tumor cell survival by suppressing an apoptotic pathway triggered by the Plexin D1 dependence receptor.

View Article and Find Full Text PDF

Repeated in vivo two-photon imaging of adult mammalian spinal cords, with subcellular resolution, would be crucial for understanding cellular mechanisms under normal and pathological conditions. Current methods are limited because they require surgery for each imaging session. Here we report a simple glass window methodology avoiding repeated surgical procedures and subsequent inflammation.

View Article and Find Full Text PDF

Body plans, which characterize the anatomical organization of animal groups of high taxonomic rank, often evolve by the reduction or loss of appendages (limbs in vertebrates and legs and wings in insects, for example). In contrast, the addition of new features is extremely rare and is thought to be heavily constrained, although the nature of the constraints remains elusive. Here we show that the treehopper (Membracidae) 'helmet' is actually an appendage, a wing serial homologue on the first thoracic segment.

View Article and Find Full Text PDF

Deciphering the precise in vivo function of a particular neuronal subpopulation is one of the most challenging issues in neurobiology. Dorsal root ganglia (DRG) neurons represent a powerful model system to address this fundamental question. These neurons display many morphological, anatomical and few molecular characteristics.

View Article and Find Full Text PDF