Publications by authors named "Melanie Genoula"

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The SRY-Box Transcription Factor 9 (SOX9) serves as a marker of stomach stem cells.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is the leading risk factor for gastric carcinogenesis. Fibroblast growth factor receptor 4 (FGFR4) is a member of transmembrane tyrosine kinase receptors that are activated in cancer.

View Article and Find Full Text PDF

Monocytes and macrophages play a central role in chronic brucellosis. Brucella abortus (Ba) is an intracellular pathogen that survives inside these cells. On the other hand, macrophages could be differentiated into classical (M1), alternative (M2) or other less-identified profiles.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) regulates the macrophage metabolic state to thrive in the host, yet the responsible mechanisms remain elusive. Macrophage activation toward the microbicidal (M1) program depends on the HIF-1α-mediated metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we ask whether a tuberculosis (TB) microenvironment changes the M1 macrophage metabolic state.

View Article and Find Full Text PDF

The ability of Mycobacterium tuberculosis (Mtb) to persist inside host cells relies on metabolic adaptation, like the accumulation of lipid bodies (LBs) in the so-called foamy macrophages (FM), which are favorable to Mtb. The activation state of macrophages is tightly associated to different metabolic pathways, such as lipid metabolism, but whether differentiation towards FM differs between the macrophage activation profiles remains unclear. Here, we aimed to elucidate whether distinct macrophage activation states exposed to a tuberculosis-associated microenvironment or directly infected with Mtb can form FM.

View Article and Find Full Text PDF

Tuberculosis dates back to ancient times but it is not a problem of the past. Each year, millions of people die from tuberculosis. After inhalation of infectious droplet nuclei, Mycobacterium tuberculosis reaches the lungs where it can manipulate the immune system and survive within host macrophages, establishing a persistent infection.

View Article and Find Full Text PDF

, the causative agent of brucellosis, displays many resources to evade T cell responses conducive to persist inside the host. Our laboratory has previously showed that infection of human monocytes with down-modulates the IFN-γ-induced MHC-II expression. outer membrane lipoproteins are structural components involved in this phenomenon.

View Article and Find Full Text PDF

CD8T cells contribute to tuberculosis (TB) infection control by inducing death of infected macrophages. Mycobacterium tuberculosis (Mtb) infection is associated with increased PD-1/PD-L1 expression and alternative activation of macrophages. We aimed to study the role of PD-1 pathway and macrophage polarization on Mtb-specific CD8T cell-induced macrophage death.

View Article and Find Full Text PDF

The ability of (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection.

View Article and Find Full Text PDF

According to their sugar recognition specificity, plant lectins are proposed as bioactive proteins with potential in cancer treatment and diagnosis. Helja is a mannose-specific jacalin-like lectin from sunflower which was shown to inhibit the growth of certain fungi. Here, we report its recombinant expression in a prokaryotic system and its activity in neurobalstoma cells.

View Article and Find Full Text PDF