Publications by authors named "Melanie Freed"

Purpose: To investigate the feasibility of using diffusion MRI (dMRI) and dynamic contrast-enhanced (DCE) MRI to evaluate the treatment response of metronomic chemotherapy (MCT) in the 4T1 mammary tumor model of locally advanced breast cancer.

Methods: Twelve Balb/c mice with metastatic breast cancer were divided into treated and untreated (control) groups. The treated group (n = 6) received five treatments of anti-metabolite agent 5-Fluorouracil (5FU) in the span of two weeks.

View Article and Find Full Text PDF

Purpose: To assess the diagnostic utility of contrast kinetic analysis for breast lesions and background parenchyma of women undergoing MRI-guided biopsies, for whom standard clinical analysis had failed to separate benign and malignant lesions.

Materials And Methods: This study included 115 women who had indeterminate lesions based on routine diagnostic breast MRI exams and underwent an MRI (3 Tesla) -guided biopsy of one or more lesions suspicious for breast cancer. Breast dynamic contrast-enhanced (DCE)-MRI was performed using a radial stack-of-stars three-dimensional spoiled gradient echo pulse sequence and modified k-space weighted image contrast image reconstruction.

View Article and Find Full Text PDF

Purpose To demonstrate the feasibility of the use of a rapid, noninvasive, in vivo imaging method to measure fatty acid fractions of breast adipose tissue during diagnostic breast magnetic resonance (MR) examinations and to investigate associations between fatty acid fractions in breast adipose tissue and breast cancer status by using this method. Materials and Methods The institutional review board approved this retrospective HIPAA-compliant study and informed consent was waived. Between July 2013 and September 2014, multiple-echo three-dimensional gradient-echo data were acquired for 89 women.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the feasibility of using simultaneous breast MRI and PET to assess the synergy of MR pharmacokinetic and fluorine-18 fluorodeoxyglucose (F-FDG) uptake data to characterize tumor aggressiveness in terms of metastatic burden and Ki67 status.

Methods: Twelve consecutive patients underwent breast and whole-body PET/MRI. During the MR scan, PET events were simultaneously accumulated.

View Article and Find Full Text PDF

Objectives: We aimed to investigate the effect of T2* correction on estimation of kinetic parameters from T1-weighted dynamic contrast enhanced (DCE) MRI data when a reference-tissue arterial input function (AIF) is used.

Materials And Methods: DCE-MRI data were acquired from seven mice with 4T1 mouse mammary tumors using a double gradient echo sequence at 7 T. The AIF was estimated from a region of interest in the muscle.

View Article and Find Full Text PDF

Background: To evaluate the influence of temporal sparsity regularization and radial undersampling on compressed sensing reconstruction of dynamic contrast-enhanced (DCE) MRI, using the iterative Golden-angle RAdial Sparse Parallel (iGRASP) MRI technique in the setting of breast cancer evaluation.

Methods: DCE-MRI examinations of the breast (n = 7) were conducted using iGRASP at 3 Tesla. Images were reconstructed with five different radial undersampling schemes corresponding to temporal resolutions between 2 and 13.

View Article and Find Full Text PDF

Purpose: To quantitatively evaluate temporal blurring of dynamic contrast-enhanced MRI data generated using a k-space weighted image contrast (KWIC) image reconstruction technique with golden-angle view-ordering.

Methods: K-space data were simulated using golden-angle view-ordering and reconstructed using a KWIC algorithm with a Fibonacci number of views enforced for each annulus in k-space. Temporal blurring was evaluated by comparing pharmacokinetic model parameters estimated from the simulated data with the true values.

View Article and Find Full Text PDF

Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the 'tumor-enhancement curve'. It is also important for the concentration field within the lesion to be as uniform as possible.

View Article and Find Full Text PDF

Background: Cardiovascular magnetic resonance (CMR) T1 mapping indices, such as T1 time and partition coefficient (λ), have shown potential to assess diffuse myocardial fibrosis. The purpose of this study was to investigate how scanner and field strength variation affect the accuracy and precision/reproducibility of T1 mapping indices.

Methods: CMR studies were performed on two 1.

View Article and Find Full Text PDF

Variability in diagnostic performance of breast dynamic contrast-enhanced MRI has highlighted the need for improved standardization. While guidance exists on some aspects of the technique, currently, there is no standardized method for selecting repetition time and flip angle, which are important determinants of image contrast. This study develops a theoretical framework for quantitative optimization of temporal aspects of dynamic contrast-enhanced MRI based on area under the receiver operating curve.

View Article and Find Full Text PDF

Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI.

Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time.

View Article and Find Full Text PDF

Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors.

Methods: The proposed model is based on a physics-based analytical description developed by Freed et al.

View Article and Find Full Text PDF

The purpose of this study is to characterize the x-ray properties of a dual-modality, anthropomorphic breast phantom whose MRI properties have been previously evaluated. The goal of this phantom is to provide a platform for optimization and standardization of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and discrimination. The phantom is constructed using a mixture of lard and egg whites, resulting in a variable, tissue-mimicking structure with separate adipose- and glandular-mimicking components.

View Article and Find Full Text PDF

Purpose: In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented.

View Article and Find Full Text PDF

Purpose: Accurate models of detector blur are crucial for performing meaningful optimizations of three-dimensional (3D) x-ray breast imaging systems as well as for developing reconstruction algorithms that faithfully reproduce the imaged object anatomy. So far, x-ray detector blur has either been ignored or modeled as a shift-invariant symmetric function for these applications. The recent development of a Monte Carlo simulation package called MANTIS has allowed detailed modeling of these detector blur functions and demonstrated the magnitude of the anisotropy for both tomosynthesis and breast CT imaging systems.

View Article and Find Full Text PDF

Purpose: MANTIS is a Monte Carlo code developed for the detailed simulation of columnar CsI scintillator screens in x-ray imaging systems. Validation of this code is needed to provide a reliable and valuable tool for system optimization and accurate reconstructions for a variety of x-ray applications. Whereas previous validation efforts have focused on matching of summary statistics, in this work the authors examine the complete point response function (PRF) of the detector system in addition to relative light output values.

View Article and Find Full Text PDF

We quantify the variation in resolution due to anisotropy caused by oblique X-ray incidence in indirect flat-panel detectors for computed tomography breast imaging systems. We consider a geometry and detector type utilized in breast computed tomography (CT) systems currently being developed. Our methods rely on mantis, a combined X-ray, electron, and optical Monte Carlo transport open source code.

View Article and Find Full Text PDF

In this paper, we consider a prototype of an adaptive SPECT system, and we use simulation to objectively assess the system's performance with respect to a conventional, non-adaptive SPECT system. Objective performance assessment is investigated for a clinically relevant task: the detection of tumor necrosis at a known location and in a random lumpy background. The iterative maximum-likelihood expectation-maximization (MLEM) algorithm is used to perform image reconstruction.

View Article and Find Full Text PDF

The authors have designed and constructed a small-animal adaptive SPECT imaging system as a prototype for quantifying the potential benefit of adaptive SPECT imaging over the traditional fixed geometry approach. The optical design of the system is based on filling the detector with the region of interest for each viewing angle, maximizing the sensitivity, and optimizing the resolution in the projection images. Additional feedback rules for determining the optimal geometry of the system can be easily added to the existing control software.

View Article and Find Full Text PDF

Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular.

View Article and Find Full Text PDF

We have designed and constructed a small-animal adaptive SPECT imaging system as a prototype for quantifying the potential benefit of adaptive SPECT imaging over the traditional fixed geometry approach. The optical design of the system is based on filling the detector with the object for each viewing angle, maximizing the sensitivity, and optimizing the resolution in the projection images. Additional feedback rules for determining the optimal geometry of the system can be easily added to the existing control software.

View Article and Find Full Text PDF