Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases.
View Article and Find Full Text PDFThe two primary ways that species respond to heterogeneous environments is through local adaptation and phenotypic plasticity. The American eel (Anguilla rostrata) presents a paradox; despite inhabiting drastically different environments [1], the species is panmictic [2, 3]. Spawning takes place only in the southern Sargasso Sea in the Atlantic Ocean [1].
View Article and Find Full Text PDFWhile nonanadromous males (stream-resident and/or mature male parr) contribute to reproduction in anadromous salmonids, little is known about their impacts on key population genetic parameters. Here, we evaluated the contribution of Atlantic salmon mature male parr to the effective number of breeders (Nb) using both demographic (variance in reproductive success) and genetic (linkage disequilibrium) methods, the number of alleles, and the relatedness among breeders. We used a recently published pedigree reconstruction of a wild anadromous Atlantic salmon population in which 2548 fry born in 2010 were assigned parentage to 144 anadromous female and 101 anadromous females that returned to the river to spawn in 2009 and to 462 mature male parr.
View Article and Find Full Text PDFAnadromous Atlantic salmon (Salmo salar) is a species of major conservation and management concern in North America, where population abundance has been declining over the past 30 years. Effective conservation actions require the delineation of conservation units to appropriately reflect the spatial scale of intraspecific variation and local adaptation. Towards this goal, we used the most comprehensive genetic and genomic database for Atlantic salmon to date, covering the entire North American range of the species.
View Article and Find Full Text PDFWild populations of Atlantic salmon have declined worldwide. While the causes for this decline may be complex and numerous, increased mortality at sea is predicted to be one of the major contributing factors. Examining the potential changes occurring in the genome-wide composition of populations during this migration has the potential to tease apart some of the factors influencing marine mortality.
View Article and Find Full Text PDFA growing number of studies are examining the factors driving historical and contemporary evolution in wild populations. By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large-scale landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic salmon representing seven previously defined genetically distinct regional groups.
View Article and Find Full Text PDFMigrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth.
View Article and Find Full Text PDFIn this study, we documented the breeding system of a wild population of Atlantic salmon (Salmo salar L.) by genetically sampling every returning adult and assessed the determinants of individual fitness. We then quantified the impacts of catch and release (C&R) on mating and reproductive success.
View Article and Find Full Text PDFMajor histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study.
View Article and Find Full Text PDFPathogens are considered a serious threat to which wild populations must adapt, most particularly under conditions of rapid environmental change. One way host adaptation has been studied is through genetic population structure at the major histocompatibility complex (MHC), a complex of adaptive genes involved in pathogen resistance in vertebrates. However, while associations between specific pathogens and MHC alleles or diversity have been documented from laboratory studies, the interaction between hosts and pathogens in the wild is more complex.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2009
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIbeta, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution.
View Article and Find Full Text PDFDisentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar. A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites.
View Article and Find Full Text PDFIn vertebrates, variability at genes of the Major Histocompatibility Complex (MHC) represents an important adaptation for pathogen resistance, whereby high allelic diversity confers resistance to a greater number of pathogens. Pathogens can maintain diversifying selection pressure on their host's immune system that can vary in intensity based on pathogen richness, pathogen virulence, and length of the cohabitation period, which tend to increase with temperature. In this study, we tested the hypothesis that genetic diversity of MHC increases with temperature along a latitudinal gradient in response to pathogen selective pressure in the wild.
View Article and Find Full Text PDF