Publications by authors named "Melanie Condron"

Recent studies highlight the emerging role of lipids as important messengers in malaria parasite biology. In an attempt to identify interacting proteins and regulators of these dynamic and versatile molecules, we hypothesised the involvement of phospholipid translocases and their substrates in the infection of the host erythrocyte by the malaria parasite Plasmodium spp. Here, using a data base searching approach of the Plasmodium Genomics Resources (www.

View Article and Find Full Text PDF

Inositol hexakisphosphate (InsP6 or IP6) is an important signalling molecule in vesicular trafficking, neurotransmission, immune responses, regulation of protein kinases and phosphatases, activation of ion channels, antioxidant functions and anticancer activities. An IP6 probe was synthesised from myo-inositol via a derivatised analogue, which was immobilised through a terminal amino group onto Dynabeads. Systematic analysis of the IP6 interactome has been performed using the IP6 affinity probe using cytosolic extracts from the LIM1215 colonic carcinoma cell line.

View Article and Find Full Text PDF

Malaria inflicts an enormous burden on global human health. The emergence of parasite resistance to front-line drugs has prompted a renewed focus on the repositioning of clinically approved drugs as potential anti-malarial therapies. Antibiotics that inhibit protein translation are promising candidates for repositioning.

View Article and Find Full Text PDF

Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction.

View Article and Find Full Text PDF

Unlabelled: A comprehensive analysis of the phosphoinositide interactome has been performed using an ω-amino analogue of phosphatidylinositol 3-phosphate (PI(3)P immobilised onto Affi-10 beads for use as an affinity absorbent for cytosolic, membrane and nuclear extracts from the LIM1215 colonic carcinoma cell line. Affinity/LC/MS/MS experiments allowed the identification of 681 proteins/protein complexes which interact with PI(3)P. Protein domain enrichment analysis identified proteins possessing PI(3)P (e.

View Article and Find Full Text PDF

We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells.

View Article and Find Full Text PDF

Immobilizing chemically synthesized analogues of PI(3,4,5)P3 onto Affi-10 beads and incorporating them into liposomes allowed their use as affinity absorbents in the comprehensive analysis of the phosphoinositide interactome using cytosolic cell extracts of the LIM1215 colon cancer cell line. This led to the identification of 282 proteins that either interact with PI(3,4,5)P3 or are indirectly captured as part of a complex containing a PI(3,4,5)P3 binding partner. Identification of the proteins was achieved using affinity/LC-MS/MS experiments.

View Article and Find Full Text PDF

A comprehensive analysis of the phosphoinositide interactome has been performed using analogues of PI(3,5)P2 and PI(4,5)P2 phosphatidyl phospholipids which were immobilized onto Affi-10 beads or incorporated into liposomes for use as affinity absorbents with cytosolic extracts from colonic carcinoma cell lines. Affinity/LC/MS/MS experiments allowed identification of 388 proteins/protein complexes that appeared to interact specifically with the phosphoinositide targets: a number of novel potential phosphoinositide interacting proteins have been identified.

View Article and Find Full Text PDF

Phosphorylation is a key posttranslational modification for modulating biological interactions. Biosensor technology is ideally suited for examining in real time the role of phosphorylation on protein-protein interactions in signaling pathways. We have developed processes for on-chip phosphorylation of immobilized receptors on biosensor surfaces.

View Article and Find Full Text PDF

Objective: Various TEL-JAK2 fusions have been identified in patients with lymphoblastic and myeloid leukemias that result in constitutive activation of the JAK2 kinase domain. Such fusions can mediate factor-independent growth of hematopoietic cell lines and induction of malignancy in mouse models.

Materials And Methods: To assess whether zebrafish could be utilized as a suitable model for the study of myeloid oncogenesis, we generated a zebrafish tel-jak2a fusion oncoprotein based on that seen in a case of chronic myeloid leukemia.

View Article and Find Full Text PDF

The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized.

View Article and Find Full Text PDF