Publications by authors named "Melanie Cobb"

The transcription factor achaete-scute complexhomolog 1 (ASCL1) is a lineage oncogene that is central in growth and survival of the majority of small cell lung cancers and neuroendocrine (NE) non-small cell lung cancers (NSCLC) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. Small cell lung cancers and NSCLC-NE that express ASCL1 exhibit relatively low ERK1/2 activity, in dramatic contrast to NSCLCs in which the ERK pathway plays a major role in pathogenesis.

View Article and Find Full Text PDF

Angiogenesis is essential for remodeling and repairing existing vessels, and this process requires signaling pathways including those controlled by transforming growth factor beta (TGF-β). We have previously reported crosstalk between TGF-β and the protein kinase With No lysine (K) 1 (WNK1). Homozygous disruption of the gene encoding WNK1 results in lethality in mice near embryonic day E12 due to impaired angiogenesis and this defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase Oxidative Stress-Responsive 1 (OSR1).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the WNK-OSR1/SPAK protein kinase signaling pathway, which is known to regulate ion homeostasis and cell volume, to discover its other potential signaling roles.
  • Researchers analyzed the binding specificity of the conserved C-terminal (CCT) domains of OSR1 and SPAK to identify possible interaction motifs in human proteins, highlighting key consensus sequences and ranking about 3,700 identified motifs.
  • The findings reveal not only that a significant portion of previously known motifs align with predicted ones but also introduce new variants lacking a previously essential arginine, showing an expanded functionality of CCT domains in linking WNK signaling to various cellular functions.
View Article and Find Full Text PDF

Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions.

View Article and Find Full Text PDF

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated.

View Article and Find Full Text PDF

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete, but abnormally activated in a wide variety of tumors. The CTA, Testis specific serine kinase 6 (TSSK6), is essential for male fertility in mice. Functional relevance of TSSK6 to cancer, if any, has not previously been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • - Activity-regulated cytoskeleton-associated protein (Arc) is crucial for various types of synaptic plasticity, such as long-term potentiation and depression, and can also form virus-like particles to facilitate mRNA transport between cells.
  • - Arc undergoes several post-translational modifications, particularly phosphorylation by protein kinase C (PKC), which occurs on specific serine residues, affecting its function.
  • - Mutating these serines to mimic phosphorylation leads to reduced palmitoylation, impaired nucleic acid binding, and instability of Arc oligomers, suggesting that PKC phosphorylation may restrict synaptic weakening and mRNA transport.
View Article and Find Full Text PDF

The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates.

View Article and Find Full Text PDF
Article Synopsis
  • Previous studies confirmed that WNK kinases 1 and 3 function as osmosensors and play a role in regulating cell volume.
  • Hydrostatic pressure affects WNK kinases by inducing phosphorylation in cell cultures and specific tubules, enhancing their activity and altering their structure.
  • Investigations using various techniques (like SEC-MALS and NMR) show that hydrostatic pressure changes the configuration of WNK3 from a dimer to a monomer, suggesting a complex relationship between pressure and osmosensing.
View Article and Find Full Text PDF

The conserved p38 MAPK family is activated by phosphorylation during stress responses and inactivated by phosphatases. C. elegans PMK-1 p38 MAPK initiates innate immune responses and blocks development when hyperactivated.

View Article and Find Full Text PDF

The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival.

View Article and Find Full Text PDF

The protein kinase WNK1 (with-no-lysine 1) influences trafficking of ion and small-molecule transporters and other membrane proteins as well as actin polymerization state. We investigated the possibility that actions of WNK1 on both processes are related. Strikingly, we identified the E3 ligase tripartite motif-containing 27 (TRIM27) as a binding partner for WNK1.

View Article and Find Full Text PDF

Purpose: Type 1 diabetes (T1D) accounts for an estimated 5% of all diabetes in the United States, afflicting over 1.25 million individuals. Maintaining long-term blood glucose control is the major goal for individuals with T1D.

View Article and Find Full Text PDF

The most frequent ERK2 (MAPK1) mutation in cancers, E322K, lies in the common docking (CD) site, which binds short motifs made up of basic and hydrophobic residues present in the activators MEK1 (MAP2K1) and MEK2 (MAP2K2), in dual specificity phosphatases (DUSPs) that inactivate the kinases, and in many of their substrates. Also, part of the CD site, but mutated less often in cancers, is the preceding aspartate (D321N). These mutants were categorized as gain of function in a sensitized melanoma system.

View Article and Find Full Text PDF

The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson's Progression Markers Initiative study, which included participants with PD carrying monogenic PD variants, variants with intermediate effects, and variants identified by genome-wide association studies and unaffected individuals.

View Article and Find Full Text PDF

Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1.

View Article and Find Full Text PDF

Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models and patient data have implicated the protein kinase WNK1 as one of a handful of genes uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely implicated in the regulation of ion co-transporters and in controlling cell responses to osmotic stress.

View Article and Find Full Text PDF

Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated.

View Article and Find Full Text PDF

Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown.

Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID).

Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.

View Article and Find Full Text PDF

Pancreatic islet beta cells require a fine-tuned endoplasmic reticulum (ER) stress response for normal function; abnormal ER stress contributes to diabetes pathogenesis. Here, we identified a small molecule, SW016789, with time-dependent effects on beta cell ER stress and function. Acute treatment with SW016789 potentiated nutrient-induced calcium influx and insulin secretion, while chronic exposure to SW016789 transiently induced ER stress and shut down secretory function in a reversible manner.

View Article and Find Full Text PDF

The with no lysine (K) 1 (WNK1) protein kinase maintains cellular ion homeostasis in many tissues through actions on ion cotransporters and channels. Increased accumulation of WNK1 protein leads to pseudohypoaldosteronism type II (PHAII), a form of familial hypertension. WNK1 can be degraded via its adaptor-dependent recruitment to the Cullin3-RBX1 E3 ligase complex by the ubiquitin-proteasome system.

View Article and Find Full Text PDF

Although targeted MAPK pathway inhibition has achieved remarkable patient responses in many cancers, the development of resistance has remained a critical challenge. Adaptive tumor response underlies the drug resistance. Furthermore, such bypass mechanisms often lead to the activation of many pro-survival kinases, which complicates the rational design of combination therapies.

View Article and Find Full Text PDF

Reproducibility of expression patterns in iPSC-derived cells from different labs is an important first step in ensuring replication of biochemical or functional assays that are performed in different labs. Here we show that reproducible gene expression patterns from iPSCs and iPSC-derived neurons matured and collected at two separate laboratory locations can be achieved by closely matching protocols and reagents. While there are significant differences in gene expression between iPSCs and differentiated neurons, as well as between different donor lines of the same cell type, transcriptional changes that vary with laboratory sites are relatively small.

View Article and Find Full Text PDF

Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades.

View Article and Find Full Text PDF