Publications by authors named "Melanie Clifford"

Article Synopsis
  • Antimicrobial resistance is rising globally, leading to high rates of illness and death, prompting the exploration of antimicrobial peptides (AMPs) as a potential alternative to traditional antibiotics due to their lower tendency to cause resistance.
  • The study identifies key properties of 46 African-derived AMPs, highlighting that the negative lipophilicity of polar amino acids is crucial for their selective antimicrobial activity without harming host cells.
  • Findings indicate that factors like overall hydrophobicity, peptide charge, and size contribute to selectively targeting pathogens, suggesting a new strategy for designing more effective AMPs for therapeutic use.
View Article and Find Full Text PDF

A new class of amphiphilic molecules, the lipoguanidines, designed as hybrids of guanidine and fatty acid compounds, has been synthesized and developed. The new molecules present both a guanidine polar head and a lipophilic tail that allow them to disrupt bacterial membranes and to sensitize Gram-negative bacteria to the action of the narrow-spectrum antibiotics rifampicin and novobiocin. The lipoguanidine sensitizes , , , and to rifampicin, thereby reducing the antibiotic minimum inhibitory concentrations (MIC) up to 256-fold.

View Article and Find Full Text PDF

Some antimicrobial peptides (AMPs) have potent bactericidal activity and are being considered as potential alternatives to classical antibiotics. In response to an infection, such AMPs are often produced in animals alongside other peptides with low or no perceivable antimicrobial activity, whose role is unclear. Here we show that six AMPs from the Winter Flounder (WF) act in synergy against a range of bacterial pathogens and provide mechanistic insights into how this increases the cooperativity of the dose-dependent bactericidal activity and potency that enable therapy.

View Article and Find Full Text PDF

MGB-BP-3 is a potential first-in-class antibiotic, a Strathclyde Minor Groove Binder (S-MGB), that has successfully completed Phase IIa clinical trials for the treatment of associated disease. Its precise mechanism of action and the origin of limited activity against Gram-negative pathogens are relatively unknown. Herein, treatment with MGB-BP-3 alone significantly inhibited the bacterial growth of the Gram-positive, but not Gram-negative, bacteria as expected.

View Article and Find Full Text PDF

The aim of this research was to explore the interaction between ultrasound-activated microbubbles (MBs) and Pseudomonas aeruginosa biofilms, specifically the effects of MB concentration, ultrasound exposure and substrate properties on bactericidal efficacy. Biofilms were grown using a Centre for Disease Control (CDC) bioreactor on polypropylene or stainless-steel coupons as acoustic analogues for soft and hard tissue, respectively. Biofilms were treated with different concentrations of phospholipid-shelled MBs (10-10 MB/mL), a sub-inhibitory concentration of gentamicin (4 µg/mL) and 1-MHz ultrasound with a continuous or pulsed (100-kHz pulse repetition frequency, 25% duty cycle, 0.

View Article and Find Full Text PDF

The pharmacodynamic profile of antimicrobial peptides (AMPs) and their synergy are two factors that are thought to restrict resistance evolution and ensure their conservation. The frog secretes a family of closely related AMPs, temporins A-L, as an effective chemical dermal defense. The antibacterial potency of temporin L has been shown to increase synergistically in combination with both temporins B and A, but this is modest.

View Article and Find Full Text PDF

Herein, we report a series of di-anionic supramolecular self-associating amphiphiles (SSAs). We elucidate the antimicrobial properties of these SSAs against both methicillin resistant and . In addition, we show this class of compound to form both intra- and intermolecular hydrogen bonded macrocyclic structures in the solid state.

View Article and Find Full Text PDF

Antimicrobial resistance and lack of new antibiotics to treat multidrug-resistant (MDR) bacteria is a significant public health problem. There is a discovery void and the pipeline of new classes of antibiotics in clinical development is almost empty. Therefore, it is important to understand the structure activity relationships (SAR) of current chemical classes as that can help the drug discovery community in their efforts to develop new antibiotics by modifying existing antibiotic classes.

View Article and Find Full Text PDF

Invasive Candida infections in hospitalized and immunocompromised or critically ill patients have become an important cause of morbidity and mortality. There are increasing reports of multidrug resistance in several Candida species that cause Candidemia, including C. glabrata and C.

View Article and Find Full Text PDF

The synthesis and biological evaluation of a series of phenanthroline-based visible-light-activated manganese(I) carbon-monoxide-releasing molecules (PhotoCORMs) against ESKAPE bacteria and bacterial biofilms is reported. Four carbonyl compounds of general formula fac-[Mn(NN)(CO)(L)] have been synthesized and characterized. Despite being thermally stable in the absence of light, these PhotoCORMs readily release CO upon blue (435-450 nm) LED light irradiation as confirmed by spectrophotometric CO releasing experiments (Mb Assay).

View Article and Find Full Text PDF

Two new epimeric bibenzylated monoterpenes machaerifurogerol () and 5--machaerifurogerol (), and four known isoflavonoids (+)-vestitol (), 7--methylvestitol (), (+)-medicarpin (), and 3,8-dihydroxy-9-methoxypterocarpan () were isolated from Pers. This plant was previously assigned as Spruce, from which machaeriols A-D (-) and machaeridiols A-C (-) were reported, and all were then re-isolated, except the minor compound , for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection.

View Article and Find Full Text PDF

The ribosomally produced antimicrobial peptides of bacteria (bacteriocins) represent an unexplored source of membrane-active antibiotics. We designed a library of linear peptides from a circular bacteriocin and show that pore-formation dynamics in bacterial membranes are tunable via selective amino acid substitution. We observed antibacterial interpeptide synergy indicating that fundamentally altering interactions with the membrane enables synergy.

View Article and Find Full Text PDF

The fluoroquinolone class of antibiotics has a well-established structure-activity relationship (SAR) and a long history in the clinic, but the effect of electron-rich benzofused substituents at the N1 position remains poorly explored. Because groups at this position are part of the topoisomerase-DNA binding complex and form a hydrophobic interaction with the major groove of DNA, it was hypothesized that an electron-rich benzofused N1 substituent could enhance this interaction. Molecular modeling techniques were employed to evaluate the binding of certain N1-modified fluoroquinolones to DNA gyrase targets from both and species compared with ciprofloxacin and norfloxacin.

View Article and Find Full Text PDF

Frogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and such properties are commonly ascribed to their ability to form secondary amphipathic, α-helix conformations in membrane mimicking milieu. Nevertheless, despite the high similarity in physical properties and preference for adopting such conformations, the spectrum of activity and potency of AMPs often varies considerably.

View Article and Find Full Text PDF

Antibiotic resistance represents a major threat worldwide. Gram-positive and Gram-negative opportunistic pathogens are becoming resistant to all known drugs mainly because of the overuse and misuse of these medications and the lack of new antibiotic development by the pharmaceutical industry. There is an urgent need to discover structurally innovative antibacterial agents for which no pre-existing resistance is known.

View Article and Find Full Text PDF

The Prestwick library was screened for antibacterial activity or "antibiotic resistance breaker" (ARB) potential against four species of Gram-negative pathogens. Discounting known antibacterials, the screen identified very few ARB hits, which were strain/drug specific. These ARB hits included antimetabolites (zidovudine, floxuridine, didanosine, and gemcitabine), anthracyclines (daunorubicin, mitoxantrone, and epirubicin), and psychoactive drugs (gabapentin, fluspirilene, and oxethazaine).

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required to understand their native function and for effective translation as therapeutics. Details of the mechanism of their interaction with the bacterial plasma membrane are desired since damage or penetration of this structure is considered essential for AMPs activity. Relatively modest modifications to AMPs primary sequence can induce substantial changes in potency and/or spectrum of activity but, hitherto, have not been predicted to substantially alter the mechanism of interaction with the bacterial plasma membrane.

View Article and Find Full Text PDF

Antimicrobial resistance has become a major global concern. Development of novel antimicrobial agents for the treatment of infections caused by multidrug resistant (MDR) pathogens is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents initially discovered and isolated from natural sources.

View Article and Find Full Text PDF

A new class of nontoxic triaryl benzimidazole compounds, derived from existing classes of DNA minor groove binders, were designed, synthesized, and evaluated for their antibacterial activity against multidrug resistant (MDR) Gram-positive and Gram-negative species. Molecular modeling experiments suggest that the newly synthesized class cannot be accommodated within the minor groove of DNA due to a change in the shape of the molecules. Compounds 8, 13, and 14 were found to be the most active of the series, with MICs in the range of 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: