Understanding how anthropogenic landscape alteration affects populations of ecologically- and economically-important insect pollinators has never been more pressing. In this context, the assessment of landscape quality typically relies on spatial distribution studies, but, whether habitat-restoration techniques actually improve the health of targeted pollinator populations remains obscure. This gap could be filled by a comprehensive understanding of how gradients of landscape quality influence pollinator physiology.
View Article and Find Full Text PDFRandom insertional mutagenesis was used to investigate pathogenicity determinants in Leptosphaeria maculans. One tagged nonpathogenic mutant, termed m20, was analysed in detail here. The mutant phenotype was investigated by microscopic analyses of infected plant tissues and in vitro growth assays.
View Article and Find Full Text PDFFollowing Agrobacterium tumefaciens-mediated mutagenesis in Leptosphaeria maculans, we identified the mutant 210, displaying total loss of pathogenicity towards its host plant (Brassica napus). Microscopic observations showed that m210 is unable to germinate on the host leaf surface and is thus blocked at the pre-penetration stage. The pathogenicity phenotype is linked with a single T-DNA insertion into the promoter region of a typical plasma membrane H(+)-ATPase-encoding gene, termed Lmpma1, thus leading to a twofold reduction in Lmpma1 expression.
View Article and Find Full Text PDF