Despite the biological interest in herring milt hydrolysate (HMH), its valorization is limited by its unpleasant odor resulting from the presence of mainly amine and carbonyl compounds. Recently, a deaerator was demonstrated as an interesting avenue to reduce the odorous content of HMH. However, the removal rate of amine and carbonyl compounds was highly dependent on the operating conditions, and the impact of such a process on the biological potential of HMH was not considered.
View Article and Find Full Text PDFHerring milt hydrolysate (HMH) presents the disadvantage of being associated with an unpleasant smell limiting its use. Thus, to develop a new effective and easy-to-use deodorization method, this research aimed to deepen the knowledge regarding the impacts of pH (pH 7 vs. pH 10), overnight stirring with nitrogen (+N vs.
View Article and Find Full Text PDFHerring milt hydrolysate (HMH), like many fish products, presents the drawback to be associated with off-flavors. As odor is an important criterion, an effective deodorization method targeting the volatile compounds responsible for off-flavors needs to be developed. The potential of electrodialysis (ED) to remove the 15 volatile compounds identified, in the first part of this work, for their main contribution to the odor of HMH, as well as trimethylamine, dimethylamine and trimethylamine oxide, was assessed by testing the impact of both hydrolysate pH (4 and 7) and current conditions (no current vs.
View Article and Find Full Text PDF