Organisms respond to their environment in various ways, including moving, adapting, acclimatising or a combination of responses. Within estuarine habitats, organisms are exposed to naturally variable environmental conditions. In urbanised estuaries, these natural variations can interact with human stressors such as habitat modification and pollution.
View Article and Find Full Text PDFMarine artificial structures provide substrates on which organisms can settle and grow. These structures facilitate establishment and spread of non-indigenous species, in part due to their distinct physical features (substrate material, movement, orientation) compared to natural habitat analogues such as rocky shores, and because following construction, they have abundant resources (space) for species to colonise. Despite the perceived importance of these habitat features, few studies have directly compared distributions of native and non-indigenous species or considered how functional identity and associated environmental preferences drive associations.
View Article and Find Full Text PDFConcrete infrastructure in coastal waters is increasing. While adding complex habitat and manipulating concrete mixtures to enhance biodiversity have been studied, field investigations of sub-millimetre-scale complexity and substrate colour are lacking. Here, the interacting effects of 'colour' (white, grey, black) and 'microtexture' (smooth, 0.
View Article and Find Full Text PDFHabitat complexity is widely considered an important determinant of biodiversity, and enhancing complexity can play a key role in restoring degraded habitats. However, the effects of habitat complexity on ecosystem functioning - as opposed to biodiversity and community structure - are relatively poorly understood for artificial habitats, which dominate many coastlines. With Greening of Grey Infrastructure (GGI) approaches, or eco-engineering, increasingly being applied around the globe, it is important to understand the effects that modifying habitat complexity has on both biodiversity and ecological functioning in these highly modified habitats.
View Article and Find Full Text PDFMarine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves.
View Article and Find Full Text PDFMarine artificial structures often support lower native species diversity and more non-indigenous species (NIS), but adding complex habitat and using bioreceptive materials have the potential to mitigate these impacts. Here, the interacting effects of structural complexity (flat, complex with pits) and concrete mixture (standard, or with oyster shell or vermiculite aggregate) on recruitment were assessed at two intertidal levels at an urban site. Complex tiles had less green algal cover, oyster shell mixtures had less brown ( sp.
View Article and Find Full Text PDFHuman activities have led to degradation of ecosystems globally. The lost ecosystem functions and services accumulate from the time of disturbance to the full recovery of the ecosystem and can be quantified as a "recovery debt," providing a valuable tool to develop better restoration practices that accelerate recovery and limit losses. Here, we quantified the recovery of faunal biodiversity and abundance toward a predisturbed state following structural restoration of oyster habitats globally.
View Article and Find Full Text PDFAs the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management. Ecosystems vary in their biota, service provision and relative exposure to risks, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2022
Urbanization is leading to biodiversity loss through habitat homogenization. The smooth, featureless surfaces of many marine urban structures support ecological communities, often of lower biodiversity, distinct from the complex natural habitats they replace. Eco-engineering (design for ecological co-benefits) seeks to enhance biodiversity and ecological functions on urban structures.
View Article and Find Full Text PDFInterest in oyster reef conservation and restoration is growing globally, but particularly in Australia, it is unclear the extent to which oyster reefs complement (versus replicate) habitat provisioning by other structured habitats in the seascape. Remote underwater video surveys of two east Australian estuaries revealed that at high tide, oyster reefs not only supported distinct fish communities to bare sediments but also to adjacent seagrass beds and mangrove forests. Fish observations in oyster reefs were close to double that of mangroves and seagrass, with species richness, abundance, feeding and wandering behaviours similar.
View Article and Find Full Text PDFAchieving a sustainable socioecological future now requires large-scale environmental repair across legislative borders. Yet, enabling large-scale conservation is complicated by policy-making processes that are disconnected from socioeconomic interests, multiple sources of knowledge, and differing applications of policy. We considered how a multidisciplinary approach to marine habitat restoration generated the scientific evidence base, community support, and funding needed to begin the restoration of a forgotten, functionally extinct shellfish reef ecosystem.
View Article and Find Full Text PDFHabitat heterogeneity is considered a primary causal driver underpinning patterns of diversity, yet the universal role of heterogeneity in structuring biodiversity is unclear due to a lack of coordinated experiments testing its effects across geographic scales and habitat types. Furthermore, key species interactions that can enhance heterogeneity, such as facilitation cascades of foundation species, have been largely overlooked in general biodiversity models. Here, we performed 22 geographically distributed experiments in different ecosystems and biogeographical regions to assess the extent to which variation in biodiversity is explained by three axes of habitat heterogeneity: the amount of habitat, its morphological complexity, and capacity to provide ecological resources (e.
View Article and Find Full Text PDFUrbanisation of coastal areas and growth in the blue economy drive the proliferation of artificial structures in marine environments. These structures support distinct ecological communities compared to natural hard substrates, potentially reflecting differences in the materials from which they are constructed. We undertook a meta-analysis of 46 studies to compare the effects of different material types (natural or eco-friendly vs.
View Article and Find Full Text PDFIntertidal rocky shores are considered among the most thermally stressful marine ecosystems, where many species live close to their upper thermal limit and depend on access to cool microclimates to persist through heat events. In such environments, the provision of cool microclimates by habitat-forming species enables persistence of associated species during high temperature events. We assessed whether, by maintaining cool microclimates through heat events, habitat formed by rock oysters (Saccostrea cucullata) provides temporal stability to associated invertebrate communities over periods of extreme temperatures.
View Article and Find Full Text PDFThe supply and fate of wrack (dead organic matter) is a critical determinant of the structure and function of shoreline ecosystems, and their role as carbon repositories. The increasingly common practise of armouring urbanised shorelines with seawalls impacts wrack deposits of unvegetated estuarine and coastal shorelines by truncating the intertidal zone and/or by modifying the physical and biological processes that deliver and remove wrack. This study tested whether such effects also extend to mangrove forests.
View Article and Find Full Text PDFThe construction of artificial structures, such as seawalls, is increasing globally, resulting in loss of habitat complexity and native species biodiversity. There is increasing interest in mitigating this biodiversity loss by adding topographic habitat to these structures, and/or seeding them with habitat-forming species. Settlement tile experiments, comparing colonisation of species to more and less complex habitats, have been used to inform eco-engineering interventions prior to their large-scale implementation.
View Article and Find Full Text PDFWorldwide, spoil from maintenance dredging of navigation channels is increasingly used to opportunistically nourish beaches. This is often justified on the presumption that nourishment will improve public beach amenity and restore sandy beach habitat. However, this is not necessarily the case, especially for beaches that do not have an immediate threat of significant erosion.
View Article and Find Full Text PDFThe effective use of ecosystem engineers to conserve biodiversity requires an understanding of the types of resources an engineer modifies, and how these modifications vary with biotic and abiotic context. In the intertidal zone, oysters engineer ecological communities by reducing temperature and desiccation stress, enhancing the availability of hard substrate for attachment, and by ameliorating biological interactions such as competition and predation. Using a field experiment manipulating shading, predator access and availability of shell substrate at four sites distributed over 900 km of east Australian coastline, we investigated how the relative importance of these mechanisms of facilitation vary spatially.
View Article and Find Full Text PDFIt has long been recognized that primary foundation species (FS), such as trees and seagrasses, enhance biodiversity. Among the species facilitated are secondary FS, including mistletoes and epiphytes. Case studies have demonstrated that secondary FS can further modify habitat-associated organisms ('inhabitants'), but their net effects remain unknown.
View Article and Find Full Text PDFEcosystem engineers that modify the thermal environment experienced by associated organisms might assist in the climate change adaptation of species. This depends on the ability of ecosystem engineers to persist and continue to ameliorate thermal stress under changing climatic conditions-traits that may display significant intraspecific variation. In the physically stressful intertidal, the complex three-dimensional structure of oysters provides shading and traps moisture during aerial exposure at low tide.
View Article and Find Full Text PDFThe strength and importance of consumer effects are predicted to increase toward low latitudes, but this hypothesis has rarely been tested using a spatially consistent methodology. In a consumer-exclusion experiment spanning twenty degrees of latitude along the east Australian coast, the magnitude of consumer effects on sub-tidal sessile assemblage composition was not greater at low than high latitudes. Across caged and control assemblages, Shannon's diversity, Pielou's evenness, and richness of functional groups decreased with increasing latitude, but the magnitude of consumer effects on these metrics did not display consistent latitudinal gradients.
View Article and Find Full Text PDFEcological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however.
View Article and Find Full Text PDF