Quantum-dense metrology constitutes a special case of quantum metrology in which two orthogonal phase space projections of a signal are simultaneously sensed beyond the shot-noise limit. Previously, it was shown that the additional sensing channel that is provided by quantum-dense metrology contains information that can be used to identify and to discard corrupted segments from the measurement data. Here, we propose and demonstrate a new method in which this information is used for improving the sensitivity without discarding any measurement segments.
View Article and Find Full Text PDFThe distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate.
View Article and Find Full Text PDF