Publications by authors named "Melanie A MacMullan"

Purpose: Long COVID is estimated to occur in 5-10% of individuals after acute SARS-CoV-2 infection. However, the pathophysiology driving the disease process is poorly understood.

Methods: We evaluated urine and plasma inflammatory and immune cytokine profiles in 33 individuals with long COVID compared to 33 who were asymptomatic and recovered, and 34 without prior infection.

View Article and Find Full Text PDF

Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics.

View Article and Find Full Text PDF

Homeostatic synaptic plasticity requires widespread remodeling of synaptic signaling and scaffolding networks, but the role of post-translational modifications in this process has not been systematically studied. Using deep-scale quantitative analysis of the phosphoproteome in mouse neocortical neurons, we found widespread and temporally complex changes during synaptic scaling up and down. We observed 424 bidirectionally modulated phosphosites that were strongly enriched for synapse-associated proteins, including S1539 in the autism spectrum disorder-associated synaptic scaffold protein Shank3.

View Article and Find Full Text PDF

COVID-19 mRNA vaccines are highly effective at preventing COVID-19. Prior studies have found detectable SARS-CoV-2 IgG antibodies in oral mucosal specimens of participants with history of COVID-19. To assess the development of oral SARS-CoV-2 IgG antibodies among people who received either the Moderna or Pfizer/BioNTech COVID-19 vaccination series, we developed a novel SARS-CoV-2 IgG enzyme-linked immunosorbent assay (ELISA) to quantify the concentrations of oral and nasal mucosal SARS-CoV-2 IgG levels.

View Article and Find Full Text PDF

Background: Developing an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method.

Methods: Here we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period.

View Article and Find Full Text PDF

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision.

View Article and Find Full Text PDF

In March 2020, the World Health Organization (WHO) declared a global health emergency-the coronavirus disease 2019 (COVID-19) pandemic. Since then, the development and implementation of vaccines against the virus amidst emerging cases of re-infection has prompted researchers to work towards understanding how immunity develops and is sustained. Serological testing has been instrumental in monitoring the development and persistence of antibodies against SARS-CoV-2 infection, however inconsistencies in detection have been reported by different methods.

View Article and Find Full Text PDF

Despite the remarkable success of chimeric antigen receptor-modified T (CAR-T) cell therapy for blood malignancies, the clinical efficacy of this novel therapy in solid tumor treatment is largely limited by the immunosuppressive tumor microenvironment (TME). For instance, immune checkpoints (e.g.

View Article and Find Full Text PDF

To facilitate containment of the COVID-19 pandemic currently active in the United States and across the world, options for easy, non-invasive antibody testing are required. Here we have adapted a commercially available, serum-based enzyme-linked immunosorbent assay (ELISA) for use with saliva samples, achieving 84.2% sensitivity and 100% specificity in a set of 149 clinical samples.

View Article and Find Full Text PDF

Current commercially available methods for reliably detecting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain expensive and inaccessible due to the need for whole-blood collection by highly trained phlebotomists using personal protective equipment (PPE). We have evaluated an antibody detection approach using the OraSure Technologies oral antibody collection device (OACD) and their proprietary SARS-CoV-2 total antibody detection enzyme-linked immunosorbent assay (ELISA). We found that the OraSure test for total antibody detection in oral fluid had comparable sensitivity and specificity to commercially available serum-based ELISAs for SARS-CoV-2 antibody detection while allowing for a more accessible form of specimen collection with the potential for self-collection.

View Article and Find Full Text PDF

Localized drug delivery holds great promise as a means of circumventing traditional chemotherapy side effects associated with high toxicity and prolonged treatments. Nanosized carriers (i.e.

View Article and Find Full Text PDF

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK.

View Article and Find Full Text PDF

Oncogenes can create metabolic vulnerabilities in cancer cells. We tested how AKT (herein referring to AKT1) and MYC affect the ability of cells to shift between respiration and glycolysis. Using immortalized mammary epithelial cells, we discovered that constitutively active AKT, but not MYC, induced cell death in galactose culture, where cells rely on oxidative phosphorylation for energy generation.

View Article and Find Full Text PDF

Quantitative mass spectrometry (MS) continues to deepen our understanding of the immune system, quickly becoming the gold standard for obtaining high-throughput, quantitative data on biomolecules. The development of targeted and multiplexed assays for biomarker quantification makes MS an attractive tool both for diagnosing diseases and for quantifying the effects of immunotherapeutics. Because of its accuracy, the use of MS for identifying biomarkers of disease reduces the potential for misdiagnosis and overtreatment.

View Article and Find Full Text PDF

Background: Single-cell genomic methods now provide unprecedented resolution for characterizing the component cell types and states of tissues such as the epithelial subsets of the gastrointestinal tract. Nevertheless, functional studies of these subsets at scale require faithful in vitro models of identified in vivo biology. While intestinal organoids have been invaluable in providing mechanistic insights in vitro, the extent to which organoid-derived cell types recapitulate their in vivo counterparts remains formally untested, with no systematic approach for improving model fidelity.

View Article and Find Full Text PDF