Brain concentrations of omega-3 docosahexaenoic acid (DHA, 22:6n-3) have been reported to positively correlate with seizure thresholds in rodent seizure models. It is not known whether brain DHA depletion, achieved by chronic dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency, lowers seizure thresholds in rats. The present study tested the hypothesis that lowering brain DHA concentration with chronic dietary n-3 PUFA deprivation in rats will reduce seizure thresholds, and that compared to injected oleic acid (OA), injected DHA will raise seizure thresholds in rats maintained on n-3 PUFA adequate and deficient diets.
View Article and Find Full Text PDFWe developed a multi-modal brain imaging system to investigate the relationship between blood flow, blood oxygenation/volume, intracellular calcium and electrographic activity during acute seizure-like events (SLEs), both before and after pharmacological intervention. Rising blood volume was highly specific to SLE-onset whereas blood flow was more correlated with all eletrographic activity. Intracellular calcium spiked between SLEs and at SLE-onset with oscillation during SLEs.
View Article and Find Full Text PDFObjective: Docosahexaenoic acid (DHA), an omega-3 fatty acid, has been reported to raise seizure thresholds. The purpose of the present study was to test the acute anticonvulsant effects of unesterified DHA in rats, using the maximal pentylenetetrazol (PTZ) seizure model, and also to examine DHA incorporation and distribution into blood serum total lipids and brain phospholipids and unesterified fatty acids. Sedation was measured to monitor for the potential toxicity of DHA.
View Article and Find Full Text PDF