Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.
View Article and Find Full Text PDFLife cycles can limit the abilities of species to track changing climatic conditions. We combined age or stage structure and a moving-habitat model to explore the effects of life history on the persistence of populations in the presence of climate change. We studied four dissimilar plant species in moving patches and found that (1) population growth rates, (2) elasticities with respect to the survival (stasis and shrinkage) components of the projection matrix, and (3) the evenness of the elasticities with respect to the components of the projection matrix all decreased as we increased the translational speeds of the patches.
View Article and Find Full Text PDFCampbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality = -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.
View Article and Find Full Text PDFBiotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question.
View Article and Find Full Text PDFTreelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD.
View Article and Find Full Text PDF