Publications by authors named "Mekayla Storer"

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed.

View Article and Find Full Text PDF

Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms.

View Article and Find Full Text PDF

Why only certain species can regenerate their appendages (e.g. tails and limbs) remains one of the biggest mysteries of nature.

View Article and Find Full Text PDF

Senescent cells are responsible, in part, for tissue decline during aging. Here, we focused on CNS neural precursor cells (NPCs) to ask if this is because senescent cells in stem cell niches impair precursor-mediated tissue maintenance. We demonstrate an aging-dependent accumulation of senescent cells, largely senescent NPCs, within the hippocampal stem cell niche coincident with declining adult neurogenesis.

View Article and Find Full Text PDF

In mammals, multi-tissue regeneration is largely restricted to the distal portion of the digit tip and involves the formation of a blastema, a transient, proliferating cell mass that reforms the diverse tissues of the digit. Historically little was known about the mammalian blastema but with recent advances in single cell transcriptomic approaches and genetic lineage tracing, a more precise understanding of this critical structure has begun to emerge. In this review we summarise the cellular mechanisms underlying adult mammalian digit tip regeneration.

View Article and Find Full Text PDF

COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.

View Article and Find Full Text PDF

Digit tip regeneration is one of the few examples of true multi-tissue regeneration in an adult mammal. The key step in this process is the formation of the blastema, a transient proliferating cell mass that generates the different cell types of the digit to replicate the original structure. Failure to form the blastema results in a lack of regeneration and has been postulated to be the reason why mammalian limbs cannot regrow following amputation.

View Article and Find Full Text PDF

The transitions from developing to adult quiescent and activated neural stem cells (NSCs) are not well understood. Here, we use single-cell transcriptional profiling and lineage tracing to characterize these transitions in the murine forebrain. We show that the two forebrain NSC parental populations, embryonic cortex and ganglionic eminence radial precursors (RPs), are highly similar even though they make glutamatergic versus gabaergic neurons.

View Article and Find Full Text PDF

Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons.

View Article and Find Full Text PDF

Here, we investigate the origin and nature of blastema cells that regenerate the adult murine digit tip. We show that Pdgfra-expressing mesenchymal cells in uninjured digits establish the regenerative blastema and are essential for regeneration. Single-cell profiling shows that the mesenchymal blastema cells are distinct from both uninjured digit and embryonic limb or digit Pdgfra-positive cells.

View Article and Find Full Text PDF

Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton.

View Article and Find Full Text PDF

Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs.

View Article and Find Full Text PDF

Senescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood.

View Article and Find Full Text PDF

Senescence-associated β-galactosidase (SAβ-gal) is a convenient histological technique used to identify senescent cells. Its ease of use is helpful to initially screen and detect senescent cells in heterogeneous cell populations both in vitro and in vivo. However, SAβ-gal staining is not an unequivocal marker of the senescent state, and diagnosis of such usually requires additional markers demonstrating an absence of proliferation and expression of cell-cycle inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Adult mammals generally lack the ability to regenerate tissues, but the distal digit can regenerate through still poorly understood mechanisms.
  • After removing the distal digit in adult mice, Schwann cell precursors (SCPs) dedifferentiate and release growth factors that aid in digit regeneration.
  • When SCPs are disrupted, regeneration is impaired, but transplanting additional SCPs can restore the process; specific factors like oncostatin M and PDGF-AA from SCPs are crucial in promoting tissue regeneration.
View Article and Find Full Text PDF

Cellular senescence is an irreversible form of cell cycle arrest that has been linked to several pathological conditions. In particular, senescence can function as a tumor suppressor mechanism, but is also thought to contribute to organismal aging. Paradoxically however, through the secretion of various factors, collectively termed the senescence-associated secretory phenotype (SASP), senescent cells can also have tumor-promoting and tissue-remodeling functions.

View Article and Find Full Text PDF
Article Synopsis
  • Senescence is a part of how cells stop dividing, which can help prevent tumors and is related to getting older, but it’s also found in babies before they're born.
  • Scientists have noticed that some cells in embryos act like they’re in a state of senescence, and these cells are not dividing but help with development.
  • The research shows that certain genes help control this process, and when they're missing, it can lead to problems in how the embryo develops.
View Article and Find Full Text PDF

Altered stem cell homeostasis is linked to organismal aging. However, the mechanisms involved remain poorly understood. Here we report novel alterations in hair follicle stem cells during skin aging, including increased numbers, decreased function, and an inability to tolerate stress.

View Article and Find Full Text PDF

Background: Congenital malformations involving the Müllerian ducts are observed in around 5% of infertile women. Complete aplasia of the uterus, cervix, and upper vagina, also termed Müllerian aplasia or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome, occurs with an incidence of around 1 in 4500 female births, and occurs in both isolated and syndromic forms. Previous reports have suggested that a proportion of cases, especially syndromic cases, are caused by variation in copy number at different genomic loci.

View Article and Find Full Text PDF

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.

View Article and Find Full Text PDF