Publications by authors named "Meizi Zheng"

Although the combined use of hydralazine and isosorbide dinitrate confers important clinical benefits in patients with heart failure, the underlying mechanism of action is still controversial. We used two models of nitroso-redox imbalance, neuronal NO synthase-deficient (NOS1(-/-)) mice and spontaneously hypertensive heart failure rats, to test the hypothesis that hydralazine (HYD) alone or in combination with nitroglycerin (NTG) or isosorbide dinitrate restores Ca(2+) cycling and contractile performance and controls superoxide production in isolated cardiomyocytes. The response to increased pacing frequency was depressed in NOS1(-/-) compared with wild type myocytes.

View Article and Find Full Text PDF

The mechanism(s) regulating nitric oxide synthase-1 (NOS1) localization within the cardiac myocyte in health and disease remains unknown. Here we tested the hypothesis that the PDZ-binding domain interaction between CAPON (carboxy-terminal PDZ ligand of NOS1), a NOS1 adaptor protein and NOS1, contribute to NOS1 localization in specific organelles within cardiomyocytes. Ventricular cardiomyocytes and whole heart homogenates were isolated from sham and post-myocardial infarction (MI) wild-type (C57BL/6) and NOS1(-/-) female mice for quantification of CAPON protein expression levels.

View Article and Find Full Text PDF

Disruption of leptin signaling in the heart may contribute to obesity-related cardiac disease, as leptin deficient (oblob) mice display cardiac hypertrophy, increased cardiac apoptosis and reduced survival. Since leptin maintains a tonic level of neuronal nitric oxide synthase (NOS1) expression in the brain, we hypothesized that leptin deficiency would decrease NOS1 cardiac expression, in turn activating xanthine oxidoreductase (XOR) and creating nitroso-redox imbalance. We studied 2- to 6-month-old oblob (n=26) and C57Bl/6 controls (n=27).

View Article and Find Full Text PDF

Xanthine oxidase (XO) activity contributes to both abnormal excitation-contraction (EC) coupling and cardiac remodeling in heart failure (HF). beta-Adrenergic hyporesponsiveness and abnormalities in Ca(2+) cycling proteins are mechanistically linked features of the HF phenotype. Accordingly, we hypothesized that XO influences beta-adrenergic responsiveness and expression of genes whose products participate in deranged EC coupling.

View Article and Find Full Text PDF

Granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) are potential new therapies to ameliorate post-myocardial infarction (post-MI) remodeling, as they enhance endogenous cardiac repair mechanisms and decrease cardiomyocyte apoptosis. Because both of these pathways undergo alterations with increasing age, we hypothesized that therapeutic efficacy of G-CSF and SCF is impaired in old versus young adult rats. MI was induced in 6- and 20-month-old rats by permanent ligation of the left coronary artery.

View Article and Find Full Text PDF

Disruption of the leptin signaling pathway within the heart causes left ventricular hypertrophy (LVH). Because human obesity is a syndrome of leptin resistance, which is not amenable to leptin treatment, the identification of parallel signal transduction pathways is of potential therapeutic value. Ciliary neurotrophic factor (CNTF), which acts parallel to leptin in the hypothalamus, is not previously recognized to have cardiac activity.

View Article and Find Full Text PDF

Increased reactive oxygen species (ROS) generation is implicated in cardiac remodeling in heart failure (HF). As xanthine oxidoreductase (XOR) is 1 of the major sources of ROS, we tested whether XOR inhibition could improve cardiac performance and induce reverse remodeling in a model of established HF, the spontaneously hypertensive/HF (SHHF) rat. We randomized Wistar Kyoto (WKY, controls, 18 to 21 months) and SHHF (19 to 21 months) rats to oxypurinol (1 mmol/L; n=4 and n=15, respectively) or placebo (n=3 and n=10, respectively) orally for 4 weeks.

View Article and Find Full Text PDF

Vimentin is a member of the intermediate filament family, and the NF-kappaB binding site is located in the human vimentin promoter. To gain insight into the role of NF-kappaB in the regulation of the vimentin gene during 12-O-tetradecanoylphorbol-13-acetate (TPA)-dependent differentiation of HL-60 cells, the effect of pyrrolidine dithiocarbamete (PDTC) has been investigated using Northern blot hybridization and DNA mobility shift assay. PDTC inhibited macrophage-like morphologic change of HL-60 cells by TPA.

View Article and Find Full Text PDF

We have shown that DNA encoding the anti-apoptotic protein Bcl-xL enhances E7-specific CD8+ T-cell responses and DNA encoding pro-apoptotic protein caspase-3 suppresses E7-specific CD8+ T-cell responses when co-administered intradermally via gene gun with DNA encoding human papillomavirus type 16 (HPV-16) E7 linked to the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1). E7 and LAMP-1 are linked to form the chimeric Sig/E7/LAMP-1 (SEL). Because co-administration does not ensure delivery of both constructs to a single cell, we used pVITRO, a mammalian expression vector with double promoters, to ensure expression of both molecules in the same cell.

View Article and Find Full Text PDF

The small G protein Ras-mediated signaling pathway has been implicated in the development of hypertrophy and diastolic dysfunction in the heart. Earlier cellular studies have suggested that the Ras pathway is responsible for reduced L-type calcium channel current and sarcoplasmic reticulum (SR) calcium uptake associated with sarcomere disorganization in neonatal cardiomyocytes. In the present study, we investigated the in vivo effects of Ras activation on cellular calcium handling and sarcomere organization in adult ventricular myocytes using a newly established transgenic mouse model with targeted expression of the H-Ras-v12 mutant.

View Article and Find Full Text PDF

p38 Mitogen-activated protein kinase (MAPK) is one of the most ancient signaling molecules and is involved in multiple cellular processes, including cell proliferation, cell growth, and cell death. In the heart, enhanced activation of p38 MAPK is associated with ischemia/reperfusion injury and the onset of heart failure. In the present study, we investigated the function of p38 MAPK in regulating cardiac contractility and its underlying mechanisms.

View Article and Find Full Text PDF