Publications by authors named "Meizhi Zhao"

Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property.

View Article and Find Full Text PDF

A novel bonding-induced emission (BIE) phenomenon of silyl-protected copper nanoclusters was observed and identified, and a new detection method for trace water in organic solvents was established based on a water-triggered BIE process. This assay employs simple and commercially available reagents and is capable of determining trace water at the ppm level.

View Article and Find Full Text PDF

Thiolated copper nanoclusters (CuNCs) with aggregation-induced emission characteristic are becoming a novel luminescent material, but it is still a challenging task to retain its bright luminescence in a neutral solution. In this work, we report a new copper nanocluster with aggregation-induced emission (AIE) enhancement property using a hydrophobic molecule as the protecting ligand, and brightly luminescent AIE particles of copper nanocluster were prepared via hydrophobic interaction. These CuNCs AIE particles possess uniform rod-like shapes, with sizes in hundreds of nanometer, and an intense luminescence; more importantly, its luminescence remains stable in neutral and alkaline solutions.

View Article and Find Full Text PDF

Thiolate-protected copper nanoclusers (CuNCs) are emerging as a promising class of luminescent materials since its unique optical properties such as aggregation-induced emission (AIE) and intriguing molecular-like behavior have been explored for sensing application. In this work, multi-stimuli responsive property of CuNCs was first investigated in depth and further adopted to develop a reliable and sensitive ACP assay. Penicilamine-capped CuNCs from a facile one-pot synthesis possess bright red luminescence and distinctive multi-stimuli responsive behaviors.

View Article and Find Full Text PDF

A reversible luminescence nanoswitch through competitive hydrophobic interaction among copper nanoclusters, p-nitrophenol and α-cyclodextrin is established, and a reliable real-time luminescent assay for acid phosphatase (ACP) activity is developed on the basis of this luminescence nanoswitch. Stable and intensely luminescent copper nanoclusters (CuNCs) were synthesized via a green one-pot approach. The hydrophobic nature of CuNCs aggregate surface is identified, and further used to drive the adsorption of p-nitrophenol on the surface of CuNCs aggregate due to their hydrophobic interaction.

View Article and Find Full Text PDF

A convenient, fluorescent dual-channel chemosensor on the basis of bis(3-pyridylmethyl)amine-functionalized carbon quantum dots (BPMA-CQDs) nanoprobe was constructed, and it can discriminatively detect glutathione from its analogues cysteine and homocysteine based on two distinctive strategies. Two distinct fluorescence responses of BPMA-CQDs probe to Cu(II) and Ag(I) were identified and further employed to achieve selective detection of Cu(II) and Ag(I) respectively. Based on the BPMA-CQDs/Cu(II) conjugate, discriminative detection of GSH was achieved in terms of correlation between the amounts of GSH and fluorescence recovery.

View Article and Find Full Text PDF

Due to the vital role of tyrosinase in melanin biosynthesis and its function as an important biomarker for melanoma cancer, highly sensitive detection of its activity using biocompatible materials is in urgent demand. Herein we report a convenient and highly sensitive fluorometric biosensor for tyrosinase activity detection based on biocompatible dopamine-functionalized Au/Ag nanoclusters (Dopa-Au/Ag NCs). Dopamine with redox property was covalently linked to Au/Ag NCs surface and formed a Dopa-Au/Ag NCs bioconjugate with strong blue fluorescence.

View Article and Find Full Text PDF

Brightly luminescent copper nanoclusters (CuNCs) were prepared via a facile one-step synthesis in organic phase, and a novel luminescent nanoswitch on the basis of CuNCs through alternation of the physical states between aggregation and dispersion in response to specific external stimuli was designed. Two states including aggregation state and disaggregation state corresponding to fluorescence on and off signaling can be readily switched in a reversible way based on the aggregation-induced emission and disaggregation-induced quenching mechanism, respectively. This reversible nanoswitch can be controlled by the external stimulus water or N,N'-dicyclohexylcarbodiimide (DCC).

View Article and Find Full Text PDF

A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP.

View Article and Find Full Text PDF