Publications by authors named "Meizhen Qu"

The yolk-shell architecture offers a promising solution to the challenges of silicon (Si) anodes in lithium-ion batteries (LIBs), particularly in addressing the significant volume changes that occur during charge and discharge cycles. However, traditional construction methods often rely on sacrificial templates and acid or alkali etching, which limits industrial applicability. In this work, we successfully constructed a silicon/carbon (Si/C) composite with a multicore yolk-shell structure using scalable spray drying technology and in-situ growth of metal-organic frameworks (MOFs) at room temperature.

View Article and Find Full Text PDF

Silicon (Si) is considered to be one of the most promising anode materials for next-generation lithium-ion batteries because of its abundant reserves, low discharge potential, and most importantly, its high theoretical specific capacity. However, the practical application of Si-based anodes is mainly hindered by the low intrinsic conductivity of Si and the large volume change upon lithiation/de-lithiation. In order to improve the electrochemical performance of Si-based anodes, we prepared a composite material consisting of Si nanoparticles (NPs) and coconut silk bio-carbon (CSC) skeleton.

View Article and Find Full Text PDF

Li-rich Mn-based cathode materials (LLOs) are often faced with problems such as low initial Coulombic efficiency (ICE), limited rate performance, voltage decay, and structural instability. Addressing these problems with a single approach is challenging. To overcome these limitations, we developed an LLO with surface functionalization using a simple fabrication method.

View Article and Find Full Text PDF

The application of carbon nanotubes to silicon nanoparticles has been used to improve the electrical conductivity of silicon-carbon anodes and prevent agglomeration of silicon nanoparticles during cycling. In this study, the composites are synthesized through an uncomplicated technique that involves the ultrasonication mixing of pyrene derivatives and carbon nanotubes and the formation of complexes with silicon nanoparticles in ultrasonic dispersion and magnetic stirring and then treated under vacuum. When the prepared composites are applied as lithium-ion battery anodes, the Si@(POH-AOCNTs) electrode displays a high reversible capacity of 3254.

View Article and Find Full Text PDF

Lithium (Li) metal anodes are drawing considerable attention owing to their ultrahigh theoretical capacities and low electrochemical reduction potentials. However, their commercialization has been hampered by safety hazards induced by continuous dendrite growth. These issues can be alleviated using the ZnO-modified 3D carbon-based host containing carbon nanotubes (CNTs) and carbon felt (CF) fabricated by electroplating in the present study (denoted as ZnO/CNT@CF).

View Article and Find Full Text PDF

Owing to the strong energy advantage of lithium anodes, the development of lithium-metal batteries has become an inevitable trend. However, plagued by the instability of solid-electrolyte interphase (SEI) films, lithium metal anodes face challenges such as lithium dendrite formation and volume expansion. Studies have proven that modulating the composition and structure of SEI films by using electrolyte additives is a convenient and valid method.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries (LIBs) are known to be practical and cost-effective devices for storing electric energy. LIBs have a low energy density, which calls for the development of new anode materials. The Prussian blue analog (PBA) is identified as being a candidate electrode material due to its facile synthesis, open framework structures, high specific surface areas, tunable composition, designable topologies and rich redox couples.

View Article and Find Full Text PDF

Lithium anodes have attracted much attention because of their high energy density, but the existence of lithium dendrites tremendously limits their practical application. Herein, it is creatively proposed to employ ,-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as an electrolyte additive to stabilize the solid electrolyte interface. BSTFA is reduced on the lithium anode surface prior to other components to form a passivation layer composed of LiF, LiN, and SiO, which not only significantly prevents the continuous consumption of the electrolyte and reduces side reactions but also effectively promotes the uniform deposition of lithium ions with fast Li transmission, thereby solving the problem of lithium dendrites.

View Article and Find Full Text PDF

Silicon anodes with an extremely high theoretical specific capacity of 4,200 mAh g have been considered as one of the most promising anode materials for next-generation lithium-ion batteries. However, the large volume expansion during lithiation hinders its practical application. In this work, pomegranate-like Si@SiO composites were prepared using a simple spray drying process, during which silicon nanoparticles reacted with oxygen and generated SiO on the surface.

View Article and Find Full Text PDF

Lithium metal anodes are a key component of high-energy-density lithium-sulfur (Li-S) batteries. However, the issues associated with lithium anodes remain unsolved owing to the immature lithium anode construction and protection technology, which leads to internal short circuits, poor capacity retention, and low coulombic efficiency for high-sulfur-loading Li-S batteries. Herein, a highly stable 3D lithium carbon fiber composite (3D LiCF) anode for high-sulfur-loading Li-S batteries was demonstrated, in which a self-formed hybrid solid-electrolyte protection layer was constructed on a lithium metal surface through codeposition of thiophenolate ions and inorganic lithium salts by using diphenyl disulfide as a co-additive in the electrolyte.

View Article and Find Full Text PDF

A new type of "smart" single-walled carbon nanotubes is created by wrapping a pyrene-labeled CO(2) -responsive polymer via π-π stacking. The polymer/SWNT hybrids not only undergo a hydrophobic-hydrophilic transition upon CO(2) stimulus of CO(2) in a mixed solvent, but also exhibit switchable dispersion/aggregation states upon the alternate bubbling of CO(2) and N(2) in pure water.

View Article and Find Full Text PDF

Here, we report a three-layer-structured hybrid nanostructure consisting of transition metal oxide TiO(2) nanoparticles sandwiched between carbonaceous polymer polyaniline (PANI) and graphene nanosheets (termed as PTG), which, by simultaneously hindering the agglomeration of TiO(2) nanoparticles and enhancing the conductivity of PTG electrode, enables fast discharge and charge. It was demonstrated that the PTG exhibited improved electrochemical performance compared to pure TiO(2). As a result, PTG nanocomposite is a promising anode material for highly efficient lithium ion batteries (LIBs) with fast charge/discharge rate and high enhanced cycling performance [discharge capacity of 149.

View Article and Find Full Text PDF

A three dimensional composite was constructed by anchoring Fe(3)O(4) nanoparticles encapsulated within carbon shells onto reduced graphene oxide sheets, which exhibited enhanced anode performances in lithium ion batteries with a specific capacity of 842.7 mAh g(-1) and superior recycle stability after 100 cycles.

View Article and Find Full Text PDF

Incorporation of reduced graphene oxide into β-Ni(OH)(2) presents high performances with specific discharge capacity of 283 mA hg(-1) after 50 cycles in Ni-MH batteries, and 507 mA hg(-1) after 30 cycles in Li ion batteries.

View Article and Find Full Text PDF

This paper reports on the synthesis of Co(3)O(4)@graphene composites (CGC) and their applications as anode materials in lithium ion batteries (LIBs). Through a chemical deposition method, Co(3)O(4) nanoparticles (NPs) with sizes in the range of 10-30 nm were homogeneously dispersed onto graphene sheets. Due to their high electrical conductivity, the graphene sheets in the CGC improved the electrical conductivity and the structure stability of CGC.

View Article and Find Full Text PDF

In the present work, single-wall carbon nanotubes-transparent conducting films (SWNTs-TCFs) were fabricated at room temperature on a flexible polycarbonate substrate using the ultrosonication-dip-coating technique. Ozone was employed to reduce the sheet resistance of conductive film. As a result, the sheet resistance of film was decreased drastically after 1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session73mihr6s644nlucv2sgv2q24hnl0qs98): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once