Sci Total Environ
February 2024
The leaching of heavy metals from asphalt pavement has attracted increasing attention due to its associated environmental risks. Comprehending the leaching process is crucial for ensuring the safe utilization of asphalt pavement. This study investigates heavy metal leaching kinetics from asphalt pavements using tank-leaching tests and dynamic simulations employing both first and second-order kinetic models.
View Article and Find Full Text PDFRutting has always been considered the main disease in asphalt pavement. Dealing with rutting disease would be benefitted by understanding the formation of rutting and testing the rutting performance of mixtures more reasonably. The objective of this paper is to systematically investigate the rutting mechanism by employing a self-designed rutting tester along with the corresponding numerical simulations.
View Article and Find Full Text PDFThrough a covalent grafting reaction, octadecyl amine (ODA) was grafted on the surface of waste rubber powder (WRP) to obtain an ODA-WRP modifier, which was in turn compounded with a styrene-butadiene-styrene block copolymer (SBS) to prepare ODA-WRP/SBS-modified asphalt. The three major indicators (i.e.
View Article and Find Full Text PDFStyrene-butadiene styrene graphene oxide nanoplatelets (SBS-g-GOs)-modified asphalt was prepared by reacting thiolated GOs (GOs-SH) with SBS in asphalt using a thiol-ene click reaction. The temperature resistance and mechanical properties of asphalts were analyzed by dynamic shear rheology (DSR) and multiple-stress creep-recovery (MSCR) tests, which revealed that an optimum amount of GOs-SH (0.02%) can effectively improve the low temperature and anti-rutting performance of SBS asphalt.
View Article and Find Full Text PDF