Publications by authors named "Meiyun Zhao"

Background: Respiratory diseases seriously threaten human health worldwide, and lung injury is an important component of respiratory disease. Complement activation is an important function of the innate immune system. Complement activation helps the body defend against invasion by external microorganisms, whereas excessive complement activation can exacerbate tissue damage or lead to unwanted side effects.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models.

View Article and Find Full Text PDF

Oil spills and chemical leakages are a serious source of pollution in oceans and rivers, and have attracted worldwide attention. Many scientists are currently engaged in the development of oil-water separation technology. In this study, the umbrella skirt of a discarded silicone rubber insulator was utilized as feedstock, and polydimethylsiloxane (PDMS) was employed to immobilize the prepared powder (FXBW) onto a polyurethane (PU) sponge skeleton.

View Article and Find Full Text PDF

Pathogenesis exploration and timely intervention of lung injury is quite necessary as it has harmed human health worldwide for years. Ficolin B (Fcn B) is a recognition molecule that can recognize a variety of ligands and play an important role in mediating the cell cycle, immune response, and tissue homeostasis in the lung. However, the role of Fcn B in bleomycin (BLM)-induced lung injury is obscure.

View Article and Find Full Text PDF

It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc-air batteries (ZABs). Herein, a CoFe-S@3D-S-NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf-like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe-MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process.

View Article and Find Full Text PDF

The traditional Chinese medicine has long been used in the treatment of diabetes, one major disease threatening the public health. It has been reported that artemether exerts antidiabetic effects on type 2 diabetes in db/db mice, however the underlying mechanisms remain unknown. In the present study, we show that artemether regulates expression of related enzymes participating in the glucose and lipid metabolism in the liver of db/db mice, which could at least partly explain the improved glucose and lipid metabolism in artemether-treated mice.

View Article and Find Full Text PDF

Inspired by the gas-trapped mechanism underwater of , we prepared a superhydrophobic yarn with a fiber network structure via a facile and environmentally friendly method. Attributed to the low surface energy, the superhydrophobic fiber network structure on the yarn is able to trap and transport bubbles directionally underwater. The functional yarn has good superhydrophobic and superaerophilic properties underwater to realize the directional transport of bubbles underwater without being pumped.

View Article and Find Full Text PDF

To investigate the superhydrophobic properties of different surface textures, nine designs of textures with micro-nanostructures were produced successfully using the laser engraving technique on the surfaces of composite insulator umbrella skirt samples made of silicon rubber. The optimal parameters of the texture designs to give rise to the best hydrophobicity were determined. The surface morphology, abrasion resistance, corrosion resistance, self-cleaning and antifouling property of the different textured surfaces as well as water droplets rolling on the textured surfaces were studied experimentally using a contact angle meter, scanning electron microscope, three-dimensional topography meter and high-speed camera system.

View Article and Find Full Text PDF

Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO) nanoparticles (MoO/CMF) via a two-step preparation method.

View Article and Find Full Text PDF