Microbial electrosynthesis is a promising technology that recovers energy from wastewater while converting CO into CH. Constructing a biocathode with both strong H-mediated and direct electron transfer capacities is crucial for efficient startup and long-term stable CH production. This study found that introducing carboxyl groups onto the cathode effectively enhanced both electron transfer pathways, improving the reduction rate and coulombic efficiency of CH production and increasing the CH yield by 2-3 times.
View Article and Find Full Text PDFIsoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures.
View Article and Find Full Text PDFThe productivity and efficiency of two-chamber microbial electrolysis cell and anaerobic digestion integrated system (MEC-AD) were promoted by a complex of anaerobic granular sludge and iron oxides (Fe-AnGS) as inoculum. Results showed that MEC-AD with Fe-AnGS achieved biogas upgrading with a 23%-29% increase in the energy recovery rate of external circuit current and a 26%-31% decrease in volatile fatty acids. The energy recovery rate of MEC-AD remained at 52%-57%, indicating a stable operation performance.
View Article and Find Full Text PDFIn response to the problem of asynchronous fermentation between lignocellulose and perishable materials in compost, the combined technology of low-temperature hydrochar and compost has been studied. Hydrochar was prepared through low-temperature hydrothermal reactions and applied to aerobic fermentation. The response relationship between lignocellulose content, electron transfer capability, and microbes was explored.
View Article and Find Full Text PDFA good response to neoadjuvant chemotherapy (NACT) is strongly associated with a higher curative resection rate and favorable outcomes for patients with gastric cancer (GC). We examined the utility of serial circulating tumor DNA (ctDNA) testing for monitoring NACT response and prognosis in stage II-III GC. Seventy-nine patients were enrolled to receive two cycles of NACT following gastrectomy with D2-lymphadenectomy.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2023
The choice of silage additives is an important factor for the storage of silage. One standard ensiling method and two enhanced ensiling methods (using natural silage, silage with mixed lactic acid bacteria, and silage with acetic acid, respectively) were carried out on Miscanthus sinensis. To determine the effects of these different methods, the biochemical methane potential (BMP) was determined.
View Article and Find Full Text PDFDue to their important roles in medicine and asymmetric metal catalysis, the formation of Betti bases has attracted wide interest in organic chemical community. Traditional multicomponent reaction methods for synthesizing Betti bases normally require long reaction times under harsh conditions (high temperature, microwave or ultrasonic irradiation, etc.) in the presence of various catalysts.
View Article and Find Full Text PDFBackground: Non-invasive liquid biopsies of circulating tumor DNA (ctDNA) is a rapidly growing field in the research of non-small cell lung cancer (NSCLC). In this study, factors affecting the concordance of mutations in paired plasma and tissue and the detection rate of ctDNA in real-world Chinese patients with NSCLC were identified.
Methods: Peripheral blood and paired formalin-fixed paraffin-embedded tumor tissue samples from 125 NSCLC patients were collected and analyzed by sequencing 15 genes.
Kitchen wastes (KW) dramatically increasing with population and economy enhancing, and dry anaerobic fermentation was used to treat it. However, the large amount of biogas residue severely restricted the application of dry anaerobic fermentation, because the high total solid might lead to the system failure. Therefore, it is urgent to find appropriate way to improve the efficiency of dry anaerobic fermentation and reduce the great amount of biogas residue.
View Article and Find Full Text PDFThe rapid startup of carbon dioxide reduction-methanogenic microbial electrosynthesis is crucial for its industrial application, and the development of cathode biofilm is the key to its industrialization. Based on the new discovery that biofilm formed by placing graphite felt in an anaerobic reactor was electroactive, with strong direct electron transfer and methanogenesis ability (24.52 mL/L/d), a new startup method was developed.
View Article and Find Full Text PDFTwo-phase high-solid digestion is conducive to the degradation of food waste. In this study, Fe/C was added in high-solid digestion in different acidification and/or methanogenic phase. The experimental results indicated that it significantly increased the cumulative yield of biomethane.
View Article and Find Full Text PDFL-cysteine is used to improve efficiency in anaerobic biological systems as an oxygen scavenger, electron shuttle and substrate source. The performance of MEC by addition of L-cysteine was investigated during start-up and operation phases, respectively. Results showed that the maximum current density of 6.
View Article and Find Full Text PDFWe reported sensitivity enhancement using multichannel parallel separation for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS) in this study. By using 2-20 array lanes for parallel separation, the sensitivity of the MCE-ICP-MS system was proportionally improved by 2-20 folds. No significantly adverse effect of parallel separation on column efficiency and resolution was observed.
View Article and Find Full Text PDFMicrofluidic devices have been fabricated on polycarbonate (PC) substrates by use of a hot embossing method using a silicon master template. By adding auxiliary lines around the functional channel on the silicon master, its lifetime was significantly prolonged and the bonding strength of the PC cover plate to the microfluidic chip was greatly improved. More than 300 polycarbonate microfluidic chips have been replicated with the same silicon mold.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2003
The coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) has demonstrated multiple advantages, including high separation efficiency, sensitivity and resolution, as well as low sample consumption and detection limit. The technique has been widely used for the speciation of environmental and biological samples. The interface between CE and the nebulizing system of ICP-MS plays a key role in the hyphenation of CE and ICP-MS.
View Article and Find Full Text PDF