Publications by authors named "Meiying Jia"

The development of a photoelectrode featuring both excellent reusability and a simple preparation process remains exceptionally challenging for TiO-based photoelectrocatalytic technology. Herein, a three-dimensional photoelectrode with N doping, oxygen vacancies (O), and carbon layers (NTC) was prepared via the "carbothermal reduction-pressing-calcination" method. The photoelectrode degraded 97.

View Article and Find Full Text PDF

The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V).

View Article and Find Full Text PDF

In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method.

View Article and Find Full Text PDF

Antimicrobial resistance is a global health security issue of widespread concern. Recent studies have unveiled the potential contribution of non-antibiotics to the emergence of antimicrobial resistance. This study investigated the effect of carbamazepine, a non-antibiotic pharmaceutical, on the fate of antibiotic resistance genes (ARGs) during anaerobic digestion.

View Article and Find Full Text PDF

Carbonated beverages are characterized by low temperatures, multiple microbubbles, high pressure, and an acidic environment, creating ideal conditions for releasing contaminants from plastic bottles. However, the release patterns of microplastics (MPs) and nanoplastics (NPs) are poorly understood. We investigated the effects of plastic type, CO filling volume, temperature, sugar content, and additive on the leakage of MPs/NPs and heavy metals.

View Article and Find Full Text PDF

Although microplastics are emerging marine pollutants that have recently attracted increasing attention, it is still difficult to identify their sources. This study reviewed 6487 articles to determine current research trends and found 237 effective concentration points after sorting, which were distributed in four regions and related to freshwater ecosystems. Results found that 15 environmental variables represented natural and anthropogenic environmental characteristics, of which seven environmental variables were selected for experimental modelling.

View Article and Find Full Text PDF

Environmental pollution has drawn forth advanced materials and progressive techniques concentrating on sustainable development. Metal-organic frameworks (MOFs) have aroused vast interest resulting from their excellent property in structure and function. Conversely, powdery MOFs in highly crystalline follow with fragility, poor processability and recoverability.

View Article and Find Full Text PDF

The excellent properties of plastics make them widely used all over the world. However, when plastics enter the environmental medium, microplastics will inevitably be produced due to physical, chemical and biological factors. Studies have shown that microplastics have been detected in terrestrial, aquatic and atmospheric environments.

View Article and Find Full Text PDF

The application of traditional powder catalysts is limited by particle agglomeration and difficult recovery. In this work, a three-dimensional porous aerogel catalyst for organic pollutants degradation in water by activating peroxydisulfate (PDS) was successfully synthesized, which was obtained via directly mixing of MIL-88B(Fe) with sol precursors followed by vacuum freeze-drying and low-temperature calcination. MIL-88B(Fe)/gelatin aerogel-150/PDS (MGA-150/PDS) system displayed satisfactory norfloxacin (NOR) degradation performance, which could remove 98.

View Article and Find Full Text PDF

This study explored the fate of mobile genetic elements (MGEs) in anaerobic digestion (AD) system with four nanoparticles (NPs) added, including carbon NPs, AlO NPs, ZnO NPs, and CuO NPs. 16S rRNA amplicon sequencing and quantitative PCR to investigate the microbial community, MGEs abundance and the potential host in the AD process. The results of high-throughput sequencing showed that ZnO NPs and CuO NPs significantly reduced the microbial diversity and significantly changed the microbial community structure.

View Article and Find Full Text PDF

Compared with the transition metal induced homogeneous catalytic system, the heterogeneous catalytic system based on transition metal-doped metal organic frameworks (MOFs) were stable for the efficient utilization of transition metal and avoiding the metal leaching. The aim of this work is to synthesize Co-doped MIL-53(Al) by one-step solvent thermal method and use it to activate peroxymonosulfate (PMS) to remove tetracycline (TC) in water. The successful synthesis of Co-MIL-53(Al) samples was demonstrated by XDR, SEM and FTIR characterizations.

View Article and Find Full Text PDF

N-doped nanoporous carbon (NC) with two-dimensional structure derived from Zn-ZIF-L via KCl exfoliation and carbonization at different temperature were prepared for adsorptive removal of tetracycline (TC). Characterizations revealed the effective dopant of N atoms and low degree of graphitization with more defects related to the enhanced adsorption capacity of the NC materials. Benefiting from the huge surface area (2195.

View Article and Find Full Text PDF

Herein, Mn-doped MIL-53(Fe) were fabricated via one-pot solvothermal method and used for peroxymonosulfate (PMS) activation towards tetracycline (TC) degradation from aqueous solution. The characterizations of SEM, FTIR and XRD were utilized to reveal the morphology and structure of the materials. The results showed that Mn-MIL-53(Fe)-0.

View Article and Find Full Text PDF

To explore a green, low-cost, and efficient strategy to synthesis reduced graphene oxide (RGO), the process and mechanism of the graphene oxide (GO) reduction by a model electrochemically active bacteria (EAB), Geobacter sulfurreducens PCA, were studied. In this work, up to 1.0 mg mL of GO was reduced by G.

View Article and Find Full Text PDF

In this work, we investigated the impact of iron nanoparticle, including magnetite nanoparticles (FeO NPs) and nanoscale zero-valent iron (nZVI), on the anaerobic digestion (AD) performance. Moreover, the evolutions of antibiotic resistance genes (ARGs), class 1 integrons-integrase (intI1) and potential hosts of ARGs were also investigated. The optimal addition of FeO NPs and nZVI to promote methane production was 0.

View Article and Find Full Text PDF

The effects of four conductive nanomaterials (nano-carbon powder, nano-AlO, nano-ZnO, nano-CuO) on sludge anaerobic digestion (AD) performance and microbial community were investigated through a 36-day fermentation experiment. Results showed that biogas production enhanced by 16.9% and 23.

View Article and Find Full Text PDF

The effect of nanoscale zero-valent iron (NZVI) and magnetite nanoparticles (FeO NPs) on anaerobic digestion (AD) performance was investigated through a series of 100-day semi-continuous mesophilic anaerobic digestions. The results indicated that biogas production had increased by 24.44% and 21.

View Article and Find Full Text PDF

As the functional material, iron nanoparticles effectively promote anaerobic digestion (AD) process, including the hydrolysis-acidification process and the biogas production. In this study, nano zero-valent iron (nZVI) and FeO nanoparticles (FeO NPs) were added to AD reactors respectively. The AD process was evaluated by the reactors performances, including pH, biogas yields and compositions, as well as the removal ratio of total solids (TS), volatile solids (VS) and soluble chemical oxygen demand (sCOD).

View Article and Find Full Text PDF