Publications by authors named "Meiyan Xing"

Nowadays, the rapid growth of population has led to a substantial increase in kitchen waste and wasted sludge. Kitchen waste is rich in organic matter, including lignocellulose. Synergistic treatment involving kitchen waste and wasted sludge can enhance treatment process.

View Article and Find Full Text PDF
Article Synopsis
  • Humins play a key role in cleaning up pollutants by helping micro-organisms interact with them, acting like electron shuttles.
  • This study explores how the composting process affects the electron transfer capabilities of humins, revealing significant changes in their electron accepting and donating capacities during composting.
  • Findings show that while composting increases the electron donating capacity, it reduces the electron accepting capacity, linked to changes in the chemical makeup of humins.
View Article and Find Full Text PDF

Earthworms play a crucial role in suppressing the dissemination of antibiotic resistance genes (ARGs) during vermicomposting. However, there is still a lack of how earthworms influence the spread of ARGs. To address this gap, a microcosm experiment was conducted, incorporating earthworms and utilizing metagenomics and quantitative PCR to assess the impact of earthworms on microbial interactions and the removal of plasmid-induced ARGs.

View Article and Find Full Text PDF

Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.

View Article and Find Full Text PDF

Landfill cover soils play an important role in mitigating landfill methane (CH) emissions. Incorporating biochar into the soil has proven effective in reducing CH emissions. However, the role of hydrophobic biochar in this context remains underexplored.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays an important role in heavy metal passivation and organic pollutant degradation owing to its redox ability. The structure and composition of DOM are determinants of redox ability changes during composting. Electric field-assisted aerobic composting (EAAC) has been shown to promote the degradation and humification of organic matter in compost.

View Article and Find Full Text PDF

A 6-year laboratory study was conducted to explore the performance of the vermifilter (VF) on reducing sewage sludge. Sewage sludge was found to be reduced significantly in the VF and exhibited a better performance of sludge reduction as compared with the conventional biofilter (BF), which could be traced through the nitrogen-rich organic matter. The nitrogen stable isotope technology was applied to study the matter flow of sewage sludge in the VF process and the influence of earthworms Eisenia fetida on sewage sludge reduction.

View Article and Find Full Text PDF

In biological processes of sludge treatment, the sludge yield is closely related to the energy dissipation of entire microbial system. The vermifilter (VF), a novel biofilter, works efficiently due to the introduction of earthworms, which modifies the energy flow pathway through the variations of microbial size structure. For a deep insight into the sludge reduction in the VF, the biomass size spectrum (BSS) was employed to map the energy dissipation in the VF.

View Article and Find Full Text PDF

This study aims to reveal the effects of earthworms (Eisenia fetida) on bacterial profiles during the vermicomposting process of sewage sludge and cattle dung with the high-throughput sequencing technology. The earthworms could accelerate organic degradation and improve the stabilization process. Moreover, the addition of earthworms not only affected the bacterial numbers, but also increased the bacterial community diversity.

View Article and Find Full Text PDF

Sludge dewaterability was chemically and morphologically explored during sewage sludge treatment by vermifiltration. The results, with a conventional biofilter (BF, no earthworms) as a control, demonstrated that the capillary suction time(CST) and specific resistance of filtration(SRF) of vermifilter (VF, with earthworms) treated sludge were 64.9±1.

View Article and Find Full Text PDF

The present study focuses on optimizing filter depth on sludge reduction in a four-stage vermifiltration during the course of treating excess sludge continuously. The results indicated that when the filter depth exceeded 75 cm, though the fourth stage can further advance the sludge reduction, its contribution for the total sludge reduction was lower than 10%, while the aerobic bacteria, especially the dominant bacteria (Proteobacteria and Bacteroidetes), kept a high similarity as the filter depth varied. Furthermore, earthworm activities attributed to aerobic bacteria being preferentially selected in the system, positively supporting the organic decomposition.

View Article and Find Full Text PDF

To improve excess sludge dewaterability, a two-stage vermifilter was developed to qualitatively and quantitatively analyze sludge physico-chemical properties (fractal dimension, zeta potential, extracellular polymeric substances (EPS), particle size distribution, etc.) and to correlate them with sludge dewatering characteristics (specific resistance to filtration (SRF) and capillary suction time (CST)). Results demonstrated that sludge dewatering performance was significantly improved after the primary vermifilter VF and the second-stage vermifilter VF.

View Article and Find Full Text PDF

A vermifilter (VF) was steadily operated to explore the mechanism of lower microbial biomass and higher enzymatic activities due to the presence of earthworms, with a conventional biofilter (BF) as a control. The analysis of 2-DE indicated that 432 spots and 488 spots were clearly detected in the VF and BF biofilm. Furthermore, MALDI-TOF/TOF MS revealed that six differential up-regulated proteins, namely Aldehyde Dehydrogenase, Molecular chaperone GroEL, ATP synthase subunit alpha, Flagellin, Chaperone protein HtpG and ATP synthase subunit beta, changed progressively.

View Article and Find Full Text PDF

With the demand of new sludge reduction processes, a vermifilter (VF) was studied based on a conventional biofilter (BF). The biofilm morphology was investigated using a new technique, the flow cytometer (FCM), to find a way to optimize VF structure. VF was inoculated with Eisenia fetida, packed with ceramsites, and operated stably at the organic load of 1.

View Article and Find Full Text PDF

This work was conducted to evaluate the effects of vermicomposting on the speciation and mobility of heavy metals (Zn, Pb, Cr, and Cu) in cattle dung (CD) and pig manure (PM) using tessier sequential extraction method. Results showed that the pH, total organic carbon and C/N ratio were reduced, while the electric conductivity and humic acid increased after 90days vermicomposting. Moreover, the addition of earthworm could accelerate organic stabilization in vermicomposting.

View Article and Find Full Text PDF

This paper reports on a seasonal pattern comparison of microbial enzymatic activities and biomass responses based on a conventional biofilter (BF, without earthworm) and a vermifilter (VF, with earthworm, Eisenia fetida) for excess sludge treatment. The volatile suspended solids (VSS) reduction, viable cell number and enzyme activities were assayed to probe what made the VF operate stably. The results indicated that the earthworm activities can polish the VSS reduction with 27.

View Article and Find Full Text PDF

Vermifiltration eco-friendly system is an alternative and low-cost artificial ecosystem for decentralized wastewater treatment and excess sludge reduction. The biofilm characteristics of a vermifilter (VF) with earthworms, Eisenia fetida, for domestic wastewater treatment were studied. A conventional biofilter (BF) without earthworms served as the control.

View Article and Find Full Text PDF

This study aimed to compare the microbial community structures and compositions in composting and vermicomposting processes. We applied 454 high-throughput pyrosequencing to analyze the 16S rRNA gene of bacteria obtained from bio-stabilization of sewage sludge and cattle dung. Results demonstrated that vermicomposting process presented higher operational taxonomic units and bacterial diversity than the composting.

View Article and Find Full Text PDF

Sewage sludge (T1) and the mixture of sewage sludge and cattle dung (T2) were vermicomposted with Eisenia fetida, respectively. The transformation of humic acid (HA) and fulvic acid (FA) extracted from these two treatments were evaluated by a series of chemical and spectroscopic methods. Results indicated that the vermicomposting decreased pH, TOC, and C/N ratio, and increased EC, total extractable C, and HA contents.

View Article and Find Full Text PDF

This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products.

View Article and Find Full Text PDF

In this study, fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC) was employed to trace the behavior of water extractable organic matter and assess the stabilization process during vermicomposting of sewage sludge and cattle dung. Experiments using different mixing ratios of sewage sludge and cattle dung were conducted using Eisenia fetida. The results showed that vermicomposting reduced the DOC, DOC/DON ratio and ammonia, while increased the nitrate content.

View Article and Find Full Text PDF

The sludge reduction capability (VSS reduction) of vermifilter (VF) was 14.7% higher than that of conventional biofilter (BF) due to the fact that there was a net loss of biomass and energy when the food web in VF is extended. Therefore, feeding behavior and trophic relationship of earthworms and other predators (leeches, lymnaeidaes and limaxes) in VF were investigated using fatty acid (FA) profiles for the first time.

View Article and Find Full Text PDF

To quantitatively explore the microbial community modified by earthworms, a vermifilter (VF, with earthworms) and a conventional biofilter (BF, without earthworms) were continuously operated to stabilize excess sludge. The results demonstrated a positive role imposed by earthworms on compositions and dominant components of microbial community in the VF. For one thing, the phyla Actinobacteria and Acidobacteria were only detected in the VF, which might explain for the higher Shannon index of bacteria in the VF (H = 2.

View Article and Find Full Text PDF

Previous studies showed that the presence of earthworm improves treatment performance of vermifilter (VF) for sewage sludge stabilization, but earthworm eco-physiological characteristics and effects in VF were not fully investigated. In this study, earthworm population, enzymatic activity, gut microbial community and stable isotopic abundance were investigated in the VF. Results showed that biomass, average weight, number and alkaline phosphatase activity of the earthworms tended to decrease, while protein content and activities of peroxidase and catalase had an increasing tendency as the VF depth.

View Article and Find Full Text PDF

This work illustrated the effects of earthworm in vermicomposting (Eisenia fetida) by determining the water-extracts through chemical and spectroscopic methods. A field experiment with sludge as the only feed was subjected to vermicomposting and the control (without worms) for three weeks. Compared to the control, vermicomposting resulted in lower pH and water-extractable organic carbon (WEOC) along with higher electrical conductivity (EC).

View Article and Find Full Text PDF