Exploiting effective therapies to fight tumor growth is an important part of modern cancer research. The anti-cancer activities of many plant-derived substances are well known, in part because the substances are often extensively distributed. Chicoric acid, a phenolic compound widely distributed in many plants, has drawn widespread attention in recent years because of its extraordinary anti-cancer activities.
View Article and Find Full Text PDFCatching cancer at an early stage is necessary to make it easier to treat and to save people's lives rather than just extending them. Reactive oxygen species (ROS) have sparked a huge interest owing to their vital role in various biological processes, especially in tumorigenesis, thus leading to the potential of ROS as prognostic biomarkers for cancer. Herein, a non-enzymatic biosensor for the dynamic monitoring of intracellular hydrogen peroxide (HO), the most important ROS, via an effective electrode composed of poly (diallyldimethylammonium chloride) (PDDA)-capped reduced graphene oxide (RGO) nanosheets with high loading trimetallic AuPtAg nanoalloy, is proposed.
View Article and Find Full Text PDFIn this work, a simple and highly selective electrochemical biosensor for determination of uric acid (UA) is synthesized by using β-lactoglobulin (BLG)-functionalized multiwall carbon nanotubes (MWCNTs) and a platinum nanoparticles (PtNPs) nanocomposite. Urate oxidase (UOx) can oxidize uric acid to hydrogen peroxide and allantoin, which provides a good opportunity for electrochemical detection for UA. Under the optimized conditions, the current changes by the UOx/Bull Serum Albumin (BSA)/BLG-MWCNTs-PtNPs/Glassy Carbon (GC) electrode with the electrochemical method was proportional to the concentration of UA.
View Article and Find Full Text PDFIn this work, a novel enzyme-mimicking nanocomposite of Mn(II)-poly-L-histidine (PLH) functionalized carboxylated multi walled carbon nanotubes (CMWCNTs) was designed and synthesized. Based on the catalase-like activity of the nanocomposite, a non-enzymatic hydrogen peroxide (HO) biosensor was then established and explored for HO electrochemical detection. The nanocomposite was characterized by Fourier transform infrared spectra, Raman spectroscopy, and transmission electron microscopy.
View Article and Find Full Text PDFThe use of graphene has leapt forward the materials field and the functional modification of graphene has not stopped. In this work, β-lactoglobulin (BLG) was used to functionalize reduced graphene oxide (RGO) based on its amphiphilic properties. Also, trimetallic PtAuPd nanoparticles were reduced to the surface of BLG-functionalized RGO and formed BLG-PtAuPd-RGO nanocomposite using facile synthesis.
View Article and Find Full Text PDF