Despite therapeutic efficacy observed with immune checkpoint blockade in advanced melanoma, many tumors do not respond to treatment, representing a need for new therapies. Here, we have generated chimeric antigen receptor (CAR) T cells targeting TYRP1, a melanoma differentiation antigen expressed on the surface of melanomas, including rare acral and uveal melanomas. TYRP1-targeted CAR T cells demonstrate antigen-specific activation and cytotoxic activity and against human melanomas independent of the MHC alleles and expression.
View Article and Find Full Text PDFThe utilization of biomaterials in implanted blood-contacting medical devices often induces a persistent problem of microbial infection, which results from bacterial adhesion and biofilm formation on the surface of biomaterials. In this research, we developed new fluorinated alkoxyphosphazene materials, specifically poly[bis(octafluoropentoxy) phosphazene] (OFP) and crosslinkable OFP (X-OFP), with improved mechanical properties, and further modified the surface topography with ordered pillars to improve the antibacterial properties. Three X-OFP materials, X-OFP, X-OFP X-OFP, with different crosslinking densities were synthesized, and textured films with patterns of 500/500/600 nm (diameter/spacing/height) were fabricated via a two stage soft lithography molding process.
View Article and Find Full Text PDFBiomaterial-associated microbial infection and thrombosis represent major issues to the success of long-term use of implantable blood-contacting medical devices. The development of new poly[bis(octafluoropentoxy) phosphazene (OFP) biomaterials provides new routes for combatting microbial infection and thrombosis. However, the limited mechanical properties of OFP to date render them unsuitable for application in medical devices and inhibit any attempts at subsequent surface topography modification.
View Article and Find Full Text PDF