Adv Colloid Interface Sci
January 2024
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing.
View Article and Find Full Text PDFInorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals.
View Article and Find Full Text PDFMixing-induced nanoprecipitation (MINP) is an efficient, controllable, scalable, versatile, and cost-effective technique for the preparation of nanoparticles. In addition to the formulation of drugs, MINP has attracted tremendous interest in other fields. In this review, we highlight recent advances in the preparation of nanoparticles with complex nanostructures MINP and their emerging applications beyond biomedicine.
View Article and Find Full Text PDFThe immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications.
View Article and Find Full Text PDFThe development of ultraviolet (UV) light-regulated cooperative catalysts has attracted wide attention and increased the understanding of structure-activity relationships. Here, we have used azobenzene-containing polyimides as supports for the controllable synthesis of Cu/2,2,6,6-tetramethyl-1-piperidine--oxyl (TEMPO) nanocatalysts. Of these nanocatalysts, the catalytic components bearing a pyrene moiety were immobilized onto polyimides containing azobenzene and naphthalene diimide (NDI) moieties aromatic stacking interactions and hydrophobic interactions in nanoprecipitation.
View Article and Find Full Text PDFNon-covalent immobilization of multifunctional catalysts onto polymer supports is a promising technique to build highly efficient heterogeneous cooperative catalysts. Here, we present a strategy to build polyimide-supported Cu/2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO) catalytic systems based on hydrophobic interactions and aromatic donor-acceptor interactions. Pyrene-containing catalytic species and naphthalene diimide (NDI)-based polyimides were chosen for the preparation of nanoparticle catalysts using the nanoprecipitation technique.
View Article and Find Full Text PDF