Biomed Opt Express
December 2022
Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference.
View Article and Find Full Text PDFCerenkov luminescence tomography (CLT) is a promising three-dimensional imaging technology that has been actively investigated in preclinical studies. However, because of the ill-posedness in the inverse problem of CLT reconstruction, the reconstruction performance is still not satisfactory for broad biomedical applications. In this study, a novel weighted auxiliary set matching pursuit (WASMP) method was explored to enhance the accuracy of CLT reconstruction.
View Article and Find Full Text PDFCerenkov luminescence tomography (CLT) is a novel and highly sensitive imaging technique, which could obtain the three-dimensional distribution of radioactive probes to achieve accurate tumor detection. However, the simplified radiative transfer equation and ill-conditioned inverse problem cause a reconstruction error. In this study, a novel attention mechanism based locally connected (AMLC) network was proposed to reduce barycenter error and improve morphological restorability.
View Article and Find Full Text PDFCerenkov luminescence tomography (CLT) is a promising imaging tool for obtaining three-dimensional (3D) non-invasive visualization of the in vivo distribution of radiopharmaceuticals. However, the reconstruction performance remains unsatisfactory for biomedical applications because the inverse problem of CLT is severely ill-conditioned and intractable. In this study, therefore, a novel non-negative iterative convex refinement (NNICR) approach was utilized to improve the CLT reconstruction accuracy, robustness as well as the shape recovery capability.
View Article and Find Full Text PDFFluorescence molecular tomography (FMT), which can visualize the distribution of fluorescence biomarkers, has become a novel three-dimensional noninvasive imaging technique for in vivo studies such as tumor detection and lymph node location. However, it remains a challenging problem to achieve satisfactory reconstruction performance of conventional FMT in the first near-infrared window (NIR-I, 700-900nm) because of the severe scattering of NIR-I light. In this study, a promising FMT method for heterogeneous mice was proposed to improve the reconstruction accuracy using the second near-infrared window (NIR-II, 1000-1700nm), where the light scattering significantly reduced compared with NIR-I.
View Article and Find Full Text PDFThe second near-infrared wavelength window (NIR-II, 1,000-1,700 nm) enables fluorescence imaging of tissue with enhanced contrast at depths of millimetres and at micrometre-scale resolution. However, the lack of clinically viable NIR-II equipment has hindered the clinical translation of NIR-II imaging. Here, we describe an optical-imaging instrument that integrates a visible multispectral imaging system with the detection of NIR-II and NIR-I (700-900 nm in wavelength) fluorescence (by using the dye indocyanine green) for aiding the fluorescence-guided surgical resection of primary and metastatic liver tumours in 23 patients.
View Article and Find Full Text PDFCerenkov luminescence tomography (CLT) has been proved as an effective tool for various biomedical applications. Because of the severe scattering of Cerenkov luminescence, the performance of CLT remains unsatisfied. This paper proposed a novel CLT reconstruction approach based on a multilayer fully connected neural network (MFCNN).
View Article and Find Full Text PDFRadical resection is the most effective method for malignant tumor treatments. However, conventional imaging cannot fully satisfy the clinical needs of surgical navigation. This study presents a novel triple-modality positron emission tomography (PET)-Cerenkov radiation energy transfer (CRET)-confocal laser endomicroscopy (CLE) imaging strategy for intraoperative tumor imaging and surgical navigation.
View Article and Find Full Text PDFDetecting deep tumors inside living subject is still challenging for Cerenkov luminescence imaging (CLI). In this study, a high-sensitivity endoscopic CLI (ECLI) system was developed with a dual-mode deep cooling approach to improve the imaging sensitivity. System was characterized through a series of ex vivo studies.
View Article and Find Full Text PDF