Publications by authors named "Meisen W"

Prognosis of metastatic triple negative breast cancer (mTNBC) remains poor despite recent advances in therapeutic options. Trastuzumab deruxtecan (T-DXd) has shown promising efficacy in patients with human epidermal growth factor receptor 2 (HER2)-low breast cancer, which is defined by immunohistochemistry (IHC) 1+ or 2+ and lack of HER2 amplification by fluorescence hybridization (FISH) testing. The purpose of the study is to evaluate the safety and initial evidence of efficacy of intratumoral administration of CF33-hNIS-anti-PD-L1 (CHECKvacc) against mTNBC.

View Article and Find Full Text PDF

Optimization of recombinant adeno-associated virus (rAAV) production has important clinical implications, as manufacturing is one of the major challenges for rAAV gene therapy. In this study, we optimized upstream and downstream processing of the rAAV production platform created by an earlier design-of-experiment approach. Our results showed that adding peptones (yeastolate, Trypton N1 or both) increased production yield by 2.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) vectors are a leading gene delivery platform, but vector manufacturing remains a challenge. New methods are needed to increase rAAV yields and reduce costs. Past efforts to improve rAAV production have focused on optimizing a single variable at a time, but this approach does not account for the interactions of multiple factors that contribute to vector generation.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how adeno-associated virus (AAV) enters cells and reaches the nucleus, which is crucial for its use in gene therapy.
  • Researchers conducted genome-wide screens in U-2 OS cells with AAV2 to identify genes that affect AAV transduction efficiency.
  • They identified specific genes that either enhance or inhibit AAV transduction, with one gene, GPR108, playing a key role in the viral trafficking process and showing selectivity for certain AAV serotypes.
View Article and Find Full Text PDF

Brain angiogenesis inhibitor (BAI1) facilitates phagocytosis and bacterial pathogen clearance by macrophages; however, its role in viral infections is unknown. Here, we examined the role of BAI1, and its N-terminal cleavage fragment (Vstat120) in antiviral macrophage responses to oncolytic herpes simplex virus (oHSV). Changes in infiltration and activation of monocytic and microglial cells after treatment of glioma-bearing mice brains with a control (rHSVQ1) or Vstat120-expressing (RAMBO) oHSV was analyzed using flow cytometry.

View Article and Find Full Text PDF

The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux(®)) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents.

View Article and Find Full Text PDF

Genetic studies suggest that the immune system is the greatest genetic contributor to multiple sclerosis (MS) susceptibility. Yet, these immune-related genes do not explain why inflammation is limited to the CNS in MS. We hypothesize that there is an underlying dysregulation in the CNS of MS patients that makes them more vulnerable to CNS inflammation.

View Article and Find Full Text PDF

Oncolytic viruses, including oncolytic herpes simplex virus (oHSV), have produced provocative therapeutic responses in patients with glioblastoma, the most aggressive brain tumor. Paradoxically, innate immune responses mediated by natural killer (NK) cells and macrophages/microglia appear to limit oHSV efficacy. Therefore, we investigated whether pretreatment with an immunosuppressive cytokine, TGFβ, might reverse these effects and thereby potentiate oHSV efficacy.

View Article and Find Full Text PDF

The five-year survival rate for patients with malignant glioma is less than 10%. Despite aggressive chemo/radiotherapy these tumors have remained resistant to almost every interventional strategy evaluated in patients. Resistance to these agents is attributed to extrinsic mechanisms such as the tumor microenvironment, poor drug penetration, and tumoral heterogeneity.

View Article and Find Full Text PDF

Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII.

View Article and Find Full Text PDF

Purpose: Oncolytic herpes simplex viruses (oHSV) represent a promising therapy for glioblastoma (GBM), but their clinical success has been limited. Early innate immune responses to viral infection reduce oHSV replication, tumor destruction, and efficacy. Here, we characterized the antiviral effects of macrophages and microglia on viral therapy for GBM.

View Article and Find Full Text PDF

The 2-year survival rate of patients with breast cancer brain metastases is less than 2%. Treatment options for breast cancer brain metastases are limited, and there is an unmet need to identify novel therapies for this disease. Brain angiogenesis inhibitor 1 (BAI1) is a GPCR involved in tumor angiogenesis, invasion, phagocytosis, and synaptogenesis.

View Article and Find Full Text PDF

SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients.

View Article and Find Full Text PDF

Glioblastoma remains a devastating disease for which novel therapies are urgently needed. Here, we report that the Aurora-A kinase inhibitor alisertib exhibits potent efficacy against glioblastoma neurosphere tumor stem-like cells in vitro and in vivo. Many glioblastoma neurosphere cells treated with alisertib for short periods undergo apoptosis, although some regain proliferative activity upon drug removal.

View Article and Find Full Text PDF

Glioblastoma is a devastating disease, and there is an urgent need to develop novel therapies, such as oncolytic HSV1 (OV) to effectively target tumor cells. OV therapy depends on tumor-specific replication leading to destruction of neoplastic tissues. Host responses that curtail virus replication limit its efficacy in vivo.

View Article and Find Full Text PDF

Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma. Naturally occurring phytochemicals have received much scientific attention because many exhibit potent tumor killing action.

View Article and Find Full Text PDF

Saposin C-dioleoylphosphatidylserine (SapC-DOPS) nanovesicles are a nanotherapeutic which effectively target and destroy cancer cells. Here, we explore the systemic use of SapC-DOPS in several models of brain cancer, including glioblastoma multiforme (GBM), and the molecular mechanism behind its tumor-selective targeting specificity. Using two validated spontaneous brain tumor models, we demonstrate the ability of SapC-DOPS to selectively and effectively cross the blood-brain tumor barrier (BBTB) to target brain tumors in vivo and reveal the targeting to be contingent on the exposure of the anionic phospholipid phosphatidylserine (PtdSer).

View Article and Find Full Text PDF

The Cdc42 guanosine triphosphatase is essential for cell polarization in several organisms and in vitro for the organization of polarized epithelial cysts. A long-standing question concerns the identity of the guanine nucleotide exchange factor (GEF) that controls this process. Using Madin-Darby canine kidney cells grown in Matrigel, we screened 70 GEFs by RNA interference.

View Article and Find Full Text PDF