Publications by authors named "Meisam Babanezhad"

Teacher motivation is considred as one of the most decisive factorts infulencing teacher functioing as well as students' achievement. Many variable can develop teacher motoivation. In this study, it is presumed that teacher engagement, comprising three facets of emotional, behavioral, and cognitive influence teacher motivation.

View Article and Find Full Text PDF

This paper is focused on the application and performance of artificial intelligence in the numerical modeling of nanofluid flows. Suspension of metallic nanoparticles in the fluids has shown potential in heat transfer enhancement of the based fluids. There are many numerical studies for the investigation of thermal and hydrodynamic characteristics of nanofluids.

View Article and Find Full Text PDF

The heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach.

View Article and Find Full Text PDF

We employed a new approach in the field of social sciences or psychological aspects of teaching besides using a very common software package that is Statistical Package for the Social Sciences (SPSS). Artificial intelligence (AI) is a new domain that the methods of its data analysis could provide the researchers with new insights for their research studies and more innovative ways to analyze their data or verify the data with this method. Also, a very significant element in teaching is teacher motivation that is the trigger that pushes the teachers forward, depending on some internal and external factors.

View Article and Find Full Text PDF

In this investigation, differential evolution (DE) algorithm with the fuzzy inference system (FIS) are combined and the DE algorithm is employed in FIS training process. Considered data in this study were extracted from simulation of a 2D two-phase reactor in which gas was sparged from bottom of reactor, and the injected gas velocities were between 0.05 to 0.

View Article and Find Full Text PDF

In predicting the turbulence property of gas (bubble) flow in the domain of continuous fluid and liquid, the integration of machine learning and computational fluid dynamics (CFD) methods reduces the overall computational time. This combination enables us to see the effective input parameters in the engineering process and the impact of operating conditions on final outputs, such as gas hold-up, heat and mass transfer, and the flow regime (uniform bubble distribution or nonuniform bubble properties). This paper uses the combination of machine learning and single-size calculation of the Eulerian method to estimate the gas flow distribution in the continuous liquid fluid.

View Article and Find Full Text PDF

Herein, a reactor of bubble column type with non-equilibrium thermal condition between air and water is mechanistically modeled and simulated by the CFD technique. Moreover, the combination of the adaptive network (AN) trainer with the fuzzy inference system (FIS) as the artificial intelligence method calling ANFIS has already shown potential in the optimization of CFD approach. Although the artificial intelligence method of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) has a good background for optimizing the other fields of research, there are not any investigations on the cooperation of this method with the CFD.

View Article and Find Full Text PDF

Computational fluid dynamics (CFD) simulating is a useful methodology for reduction of experiments and their associated costs. Although the CFD could predict all hydro-thermal parameters of fluid flows, the connections between such parameters with each other are impossible using this approach. Machine learning by the artificial intelligence (AI) algorithm has already shown the ability to intelligently record engineering data.

View Article and Find Full Text PDF

Heat transfer augmentation of the nanofluids is still an attractive concept for researchers due to rising demands for designing efficient heat transfer fluids. However, the pressure loss arisen from the suspension of nanoparticles in liquid is known as a drawback for developing such novel fluids. Therefore, prediction of the nanofluid pressure, especially in internal flows, has been focused on studies.

View Article and Find Full Text PDF

Utilizing artificial intelligence algorithm of adaptive network-based fuzzy inference system (ANFIS) in combination with the computational lfuid dynamics (CFD) has recently revealed great potential as an auxiliary method for simulating challenging fluid mechnics problems. This research area is at the beginning, and needs sophisticated algorithms to be developed. No studies are available to consider the efficiency of the other trainers like differential evolution (DE) integrating with the FIS for capturing the pattern of the simulation results generated by CFD technique.

View Article and Find Full Text PDF

Artificial intelligence (AI) techniques have illustrated significant roles in finding general patterns of CFD (Computational fluid dynamics) results. This study is conducted to develop combination of the ant colony optimization (ACO) algorithm with the fuzzy inference system (ACOFIS) for learning the CFD results of a physical case study. This binary join of the ACOFIS and CFD was used for pressure and temperature predictions of AlO/water nanofluid flow in a heated porous pipe.

View Article and Find Full Text PDF

A nanofluid containing water and nanoparticles made of copper (Cu) inside a cavity with square shape is simulated utilizing the computational fluid dynamics (CFD) approach. The nanoparticles made up 15% of the nanofluid. By performing the simulation, the CFD output is characterized by the coordinates in the x, y, nanofluid temperature, and velocity in the y-direction that these outputs are obtained for different physical time iterations.

View Article and Find Full Text PDF

This investigation is conducted to study the integration of the artificial intelligence (AI) method with computational fluid dynamics (CFD). The case study is hydrodynamic and heat-transfer analyses of water flow in a metal foam tube under a constant wall heat flux (i.e.

View Article and Find Full Text PDF

In the current research paper a novel hybrid model combining first-principle and artificial intelligence (AI) was developed for simulation of a chemical reactor. We study a 2-dimensional reactor with heating sources inside it by using computational fluid dynamics (CFD). The type of considered reactor is bubble column reactor (BCR) in which a two-phase system is created.

View Article and Find Full Text PDF

For understanding the complex behavior of fluids in a multiphase chemical bubble column reactor, a combination of the computational fluid dynamic (CFD) method and the adaptive network-based fuzzy inference system (ANFIS) method is used to predict bubble flow inside a reactor based on the function of column height. In this study, the Euler-Euler model is employed as a CFD method. In the Eulerian method, continuity and momentum governing equations are mathematically computed for each phase, while the equations are connected together by source terms.

View Article and Find Full Text PDF

Bubbly flow behavior simulation in two-phase chemical reactors such bubble column type reactors is widely employed for chemical industry purposes. The computational fluid dynamics (CFD) approach has been employed by engineers and researchers for modeling these types of chemical reactors. In spite of the CFD robustness for simulating transport phenomena and chemical reactions in these reactors, this approach has been known as expensive for modeling such turbulent complex flows.

View Article and Find Full Text PDF

The insertion of porous metal media inside the pipes and channels has already shown a significant heat transfer enhancement by experimental and numerical studies. Porous media could make a mixing flow and small-scale eddies. Therefore, the turbulence parameters are attractive in such cases.

View Article and Find Full Text PDF

In the current study, Artificial Intelligence (AI) approach was used for the learning of a physical system. We applied four inputs and one output in the learning process of AI. In the learning process, the inputs are space locations of a BCR (bubble column reactor), which are x, y, and z coordinate as well as the amount of gas fraction in BCR.

View Article and Find Full Text PDF

The integration of the computational fluid dynamics (CFD) and the adaptive network-based fuzzy inference system, known as ANFIS, is investigated for simulating the hydrodynamic in a bubble column reactor. The Eulerian-Eulerian two-phase model is employed as the CFD approach. For the ANFIS technique, a sensitivity analysis is done by varying the number of inputs and the number of membership functions (MFs).

View Article and Find Full Text PDF

Direct numerical simulation (DNS) of particle hydrodynamics in the multiphase industrial process enables us to fully learn the process and optimize it on the industrial scale. However, using high-resolution computational calculations for particle movement and the interaction between the solid phase and other phases in fine timestep is limited to excellent computational resources. Solving the Eulerian flow field as a source of solid particle movement can be very time-consuming.

View Article and Find Full Text PDF

In membrane separation technologies, membrane modules are used to separate chemical components. In membrane technology, understanding the behavior of fluids inside membrane module is challenging, and numerical methods are possible by using computational fluid dynamics (CFD). On the other hand, the optimization of membrane technology via CFD needs time and computational costs.

View Article and Find Full Text PDF

Many numerical methods have been used to simulate the fluid flow pattern in different industrial devices. However, they are limited with modeling of complex geometries, numerical stability and expensive computational time for computing, and large hard drive. The evolution of artificial intelligence (AI) methods in learning large datasets with massive inputs and outputs of CFD results enables us to present completely artificial CFD results without existing numerical method problems.

View Article and Find Full Text PDF

In this study, a square cavity is modeled using Computational Fluid Dynamics (CFD) as well as artificial intelligence (AI) approach. In the square cavity, copper (Cu) nanoparticle is the nanofluid and the flow velocity characteristics in the x-direction and y-direction, and the fluid temperature inside the cavity at different times are considered as CFD outputs. CFD outputs have been assessed using one of the artificial intelligence algorithms, such as a combination of neural network and fuzzy logic (ANFIS).

View Article and Find Full Text PDF

A combination of a fuzzy inference system (FIS) and a differential evolution (DE) algorithm, known as the differential evolution-based fuzzy inference system (DEFIS), is developed for the prediction of natural heat transfer in Cu-water nanofluid within a cavity. In the development of the hybrid model, the DE algorithm is used for the training process of FIS. For this purpose, first, the case study is simulated using the computational fluid dynamic (CFD) method.

View Article and Find Full Text PDF