Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning.
View Article and Find Full Text PDFThe amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
October 2019
The surface structure of fluoroapatite (0001) (FAp) under quasi-dry and humid conditions has been probed with surface X-ray diffraction (SXRD). Lateral and perpendicular atomic relaxations corresponding to the FAp termination before and after HO exposure and the location of the adsorbed water molecules have been determined from experimental analysis of the crystal truncation rod (CTR) intensities. The surface under dry conditions exhibits a bulk termination with relaxations in the outermost atomic layers.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF).
View Article and Find Full Text PDFFunctional neuroanatomy of Pavlovian fear has identified neuronal circuits and synapses associating conditioned stimuli with aversive events. Hebbian plasticity within these networks requires additional reinforcement to store particularly salient experiences into long-term memory. Here we have identified a circuit that reciprocally connects the ventral periaqueductal gray and dorsal raphe region with the central amygdala and that gates fear learning.
View Article and Find Full Text PDFTonic inhibition mediated by ambient levels of GABA that activate extrasynaptic GABA receptors emerges as an essential factor that tunes neuronal network excitability in vitro and shapes behavioral responses in vivo. To address the role of neuromodulatory transmitter systems on this type of inhibition, we employed patch clamp recordings in mouse amygdala slice preparations. Our results show that the current amplitude of tonic inhibition (I) in projection neurons of the basal amygdala (BA) is increased by preincubation with the neurosteroid THDOC, while the benzodiazepine diazepam is ineffective.
View Article and Find Full Text PDFCholinergic neuromodulation in the hippocampus controls the salience of background context memory acquired in the presence of elemental stimuli predicting an aversive reinforcement. With pharmacogenetic inhibition we here demonstrate that hilar perforant path-associated (HIPP) cells of the dentate gyrus mediate the devaluation of background context memory during Pavlovian fear conditioning. The salience adjustment is sensitive to reduction of hilar neuropeptide Y (NPY) expression via dominant negative CREB expression in HIPP cells and to acute blockage of NPY-Y1 receptors in the dentate gyrus during conditioning.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) heterozygous knockout mice (BDNF+/- mice) show fear learning deficits from 3 months of age onwards. Here, we addressed the question how this learning deficit correlates with altered long-term potentiation (LTP) in the cortical synaptic input to the lateral amygdala (LA) and at downstream intra-amygdala synapses in BDNF+/- mice. Our results reveal that the fear learning deficit in BDNF+/- mice was not paralleled by a loss of LTP, neither at cortical inputs to the LA nor at downstream intra-amygdala glutamatergic synapses.
View Article and Find Full Text PDFThe release of phosphorus (P) from bed sediments to the overlying water can delay the recovery of lakes for decades following reductions in catchment contributions, preventing water quality targets being met within timeframes set out by environmental legislation (e.g. EU Water Framework Directive: WFD).
View Article and Find Full Text PDFLanthanum (La) modified bentonite is being increasingly used as a geo-engineering tool for the control of phosphorus (P) release from lake bed sediments to overlying waters. However, little is known about its effectiveness in controlling P across a wide range of lake conditions or of its potential to promote rapid ecological recovery. We combined data from 18 treated lakes to examine the lake population responses in the 24 months following La-bentonite application (range of La-bentonite loads: 1.
View Article and Find Full Text PDFAims: To report the three-year clinical outcome of the Axxess™ stent, a nitinol self-expanding Biolimus A9™ eluting stent for treatment of de novo coronary bifurcation lesions. The Axxess stent is a new-generation drug-eluting stent that might offer advantages in terms of improved clinical outcomes and safety profile in bifurcation lesion stenting.
Methods And Results: The DIVERGE study was a multicentre, prospective, single-arm trial.
Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application.
View Article and Find Full Text PDFOf growing interest in the control of sediment phosphorus (P) release in lakes is the use of solid phase P-sorbing products (PSPs) including industrial by-products and naturally occurring or modified mineral complexes. However, there is a need to report on novel PSPs proposed by suppliers for use in lake remediation projects at the national scale. We comparatively assessed the elemental composition and P sorption properties of six industrial waste-products (waste-products from treatment of abandoned mine waters - 'red ochre' and 'black ochre'; waste products from building practices: 'gypsum', 'sander dust', 'mag dust' and 'vermiculite') and one commercially available modified lanthanum (La) bentonite product (Phoslock®), all of which have been proposed for use in remediation projects in UK lakes.
View Article and Find Full Text PDFBeside its role in development and maturation of synapses, brain-derived neurotrophic factor (BDNF) is suggested to play a critical role in modulation and plasticity of glutamatergic as well as GABAergic synaptic transmission. Here, we used heterozygous BDNF knockout (BDNF(+/-)) mice, which chronically lack approximately 50% of BDNF of wildtype (WT) animals, to investigate the role of BDNF in regulating synaptic transmission in the ventrobasal complex (VB) of the thalamus. Excitatory transmission was characterized at glutamatergic synapses onto relay (TC) neurons of the VB and intrathalamic inhibitory transmission was characterized at GABAergic synapses between neurons of the reticular thalamic nucleus (RTN) and TC neurons.
View Article and Find Full Text PDFThe mechanisms underlying spontaneous burst activity (SBA), appearing in networks of embryonic cortical neurons at the end of the first week in vitro, remain elusive. Here we investigated the contribution of the hyperpolarization-activated cation current (I(h)) to SBA in cortical cultures of GAD67-GFP mice. I(h) current could be detected in GFP-positive large GABAergic interneurons (L-INs) and glutamatergic principal neurons (PNs) as early as DIV 5.
View Article and Find Full Text PDFBackground: Biolimus-eluting stents (BESs) with a biodegradable polymer in abluminal coating achieve more complete coverage at 9 months compared with sirolimus-eluting stents (SESs) with a durable polymer, as assessed by optical coherence tomography (OCT). Whether this advantage persists or augments after complete resorption of the polymer (>12 months) is unknown.
Methods: The LEADERS trial compared the performance of BES with that of SES.
The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in the hippocampus and the neocortex of the mammalian brain. In contrast, a role of BDNF in mediating synaptic plasticity and fear learning in the amygdala is just beginning to evolve. Using patch clamp recordings from projection neurons of the dorsal lateral amygdala (LA) in acute slices of mice, we now investigated the cellular mechanism of BDNF-mediated long-term potentiation (LTP) of excitatory postsynaptic currents (EPSCs) in the amygdala.
View Article and Find Full Text PDFLanthanum-modified bentonite clay (Phoslock(®) is a lake remediation tool designed to strip dissolved phosphorus (P) from the water column and increase the sediment P-sorption capacity. This study investigated short term alterations in sediment elemental composition and sediment P-fractions based on sediment cores taken 2 days before and 28 days following the application of 24 t of Phoslock® to a 9 ha, man-made reservoir. Following the application, sediment lanthanum (La) content increased significantly (p < 0.
View Article and Find Full Text PDFThe neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
January 2010
The G protein-coupled P2Y(11) receptor is involved in immune system modulation. In-depth physiological evaluation is hampered, however, by a lack of selective and potent ligands. By screening a library of sulfonic and phosphonic acid derivatives at P2Y(11) receptors recombinantly expressed in human 1321N1 astrocytoma cells (calcium and cAMP assays), the selective non-nucleotide P2Y(11) agonist NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] was identified.
View Article and Find Full Text PDFNeuropeptide S (NPS) and its receptor are thought to define a set of specific brain circuits involved in fear and anxiety. Here we provide evidence for a novel, NPS-responsive circuit that shapes neural activity in the mouse basolateral amygdala (BLA) via the endopiriform nucleus (EPN). Using slice preparations, we demonstrate that NPS directly activates an inward current in 20% of EPN neurons and evokes an increase of glutamatergic excitation in this nucleus.
View Article and Find Full Text PDFNetworks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice.
View Article and Find Full Text PDF