Publications by authors named "Meirong Xia"

Nitrogen-doped carbons with promising electrochemical performance exhibit a strong dependence on nitrogen configuration. Therefore, accurate control of nitrogen configurations is crucial to clarify their influence. Unfortunately, there is still no well-defined conversion route to finely control nitrogen configuration.

View Article and Find Full Text PDF

Transition metal oxides (TMOs) play a crucial role in lithium-ion batteries (LIBs) due to their high theoretical capacity, natural abundance, and benign environmental impact, but they suffer from limitations such as cyclability and high-rate discharge ability. One leading cause is the lithiation-induced volume expansion (LIVE) for "conversion"-type TMOs, which can result in high stress, fracture and pulverization. Using carbon layers is an effective strategy to provide effective volumetric accommodation for lithium-ion (Li) insertion; however, the detailed mechanism is unknown.

View Article and Find Full Text PDF

A zinc-based single-atom catalyst has been recently explored with distinguished stability, of which the fully occupied Zn 3d electronic configuration is Fenton-reaction-inactive, but the catalytic activity is thus inferior. Herein, we report an approach to manipulate the s-band by constructing a B,N co-coordinated Zn-B/N-C catalyst. We confirm both experimentally and theoretically that the unique N -Zn-B configuration is crucial, in which Zn (3d 4s ) can hold enough delocalized electrons to generate suitable binding strength for key reaction intermediates and promote the charge transfer between catalytic surface and ORR reactants.

View Article and Find Full Text PDF

A facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide (CdS) nanoparticles on CTF-1, a covalent triazine-based frameworks (CTFs). In this system, CTF-1 not only acted as supporter but also served as photocatalyst and electron donor. The performance of the obtained CdS deposited CTF-1 (CdS-CTF-1) nanocomposite was evaluated by H evolution reaction under visible light irradiation.

View Article and Find Full Text PDF

With the rapid development of industry, the problem of environmental pollution has become increasingly prominent. Exploring and preparing green, efficient, and low cost catalysts has become the key challenge for scientists. However, some conventional preparation methods are limited by conditions, such as cumbersome operation, high energy consumption, and high pollution.

View Article and Find Full Text PDF

With development of the society, the problem of environmental pollution is becoming more and more serious. There is the urgent need to develop a new type of sustainable green material for degradable pollutants. However, the conventional preparation method is limited by conditions such as cumbersome operation, high energy consumption, and high pollution.

View Article and Find Full Text PDF

The catalytic performance of Pt-based catalysts for oxygen reduction reactions (ORR) can generally be enhanced by constructing high-index exposed facets (HIFs). However, the synthesis of Pt alloyed high-index skins on 1D non-Pt surfaces to further improve Pt utilization and stability remains a fundamental challenge for practical nanocrystals. In this work, Pd nanowires (NWs) are selected as a rational medium to facilitate the epitaxial growth of Pt and Ni.

View Article and Find Full Text PDF

Developing an efficient non-noble bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in the same electrolyte is significant for lowering the cost of electrochemical water splitting. Herein, a phase-pure pentlandite Ni4.3Co4.

View Article and Find Full Text PDF

The emergence of atomically thick nanolayer materials, which feature a short ion diffusion channel and provide more exposed atoms in the electrochemical reactions, offers a promising occasion to optimize the performance of supercapacitors on the atomic level. In this work, a novel monolayer Ni-Co hydroxyl carbonate with an average thickness of 1.07 nm is synthesized via an ordinary one-pot hydrothermal route for the first time.

View Article and Find Full Text PDF

Aqueous hybrid capacitors (HCs) suffer from sacrificed power density and long cycle life due to the insufficient electric conductivity and poor chemical stability of the battery-type electrode material. Herein, we report a novel NH4-Co-Ni phosphate with a stable hierarchical structure combining ultrathin nanopieces and single crystal microplatelets in one system, which allows for a synergistic integration of two microstructures with different length scales and different energy storage mechanisms. The microplatelets with a stable single crystal structure store charge through the intercalation of hydroxyl ions, while the ultrathin nanopieces store charge through surface redox reaction providing enhanced specific capacitance.

View Article and Find Full Text PDF

Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm(-3) in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g(-1).

View Article and Find Full Text PDF