ERAP1 is a zinc-dependent M1-aminopeptidase that trims lipophilic amino acids from the N-terminus of peptides. Owing to its importance in the processing of antigens and regulation of the adaptive immune response, dysregulation of the highly polymorphic ERAP1 has been implicated in autoimmune disease and cancer. To test this hypothesis and establish the role of ERAP1 in these disease areas, high affinity, cell permeable and selective chemical probes are essential.
View Article and Find Full Text PDFAPOBEC3B (A3B) deamination activity on ssDNA is considered a contributing factor to tumor heterogeneity and drug resistance in a number of human cancers. Despite its clinical impact, little is known about A3B ssDNA substrate preference. We have used nuclear magnetic resonance to monitor the catalytic turnover of A3B substrates in real-time.
View Article and Find Full Text PDFDemonstrating intracellular protein target engagement is an essential step in the development and progression of new chemical probes and potential small molecule therapeutics. However, this can be particularly challenging for poorly studied and noncatalytic proteins, as robust proximal biomarkers are rarely known. To confirm that our recently discovered chemical probe 1 (CCT251236) binds the putative transcription factor regulator pirin in living cells, we developed a heterobifunctional protein degradation probe.
View Article and Find Full Text PDFThe heat shock protein 70s (HSP70s) are molecular chaperones implicated in many cancers and of significant interest as targets for novel cancer therapies. Several HSP70 inhibitors have been reported, but because the majority have poor physicochemical properties and for many the exact mode of action is poorly understood, more detailed mechanistic and structural insight into ligand-binding to HSP70s is urgently needed. Here we describe the first comprehensive fragment-based inhibitor exploration of an HSP70 enzyme, which yielded an amino-quinazoline fragment that was elaborated to a novel ATP binding site ligand with different physicochemical properties to known adenosine-based HSP70 inhibitors.
View Article and Find Full Text PDFExposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.
View Article and Find Full Text PDFThe 2,11-cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran-based compounds designed to augment a typical medicinal chemistry library screen. Ring-closing metathesis, lactonisation and SmI2 -mediated methods were exemplified and applied to the installation of a third ring to mimic the nine-membered ring of the 2,11-cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical-space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library.
View Article and Find Full Text PDFThe ability to obtain a homogeneous sample of protein is invaluable when studying the effect of alterations such as post-translational modifications (PTMs). Selective functionalization of a protein to investigate the effect of PTMs on its structure or activity can be achieved by chemical modification of cysteine residues. We demonstrate here that one such technique, which involves conversion of cysteine to dehydroalanine followed by thiol nucleophile addition, is suitable for the site-specific installation of a wide range of chemical mimics of PTMs, including acetylated and dimethylated lysine, and other unnatural amino acids.
View Article and Find Full Text PDFMost protein kinases are regulated through activation loop phosphorylation, but the contributions of individual sites are largely unresolved due to insufficient control over sample phosphorylation. Aurora-A is a mitotic Ser/Thr protein kinase that has two regulatory phosphorylation sites on its activation loop, T287 and T288. While phosphorylation of T288 is known to activate the kinase, the function of T287 phosphorylation is unclear.
View Article and Find Full Text PDFCheckpoint kinase 2 (CHK2) is an important serine/threonine kinase in the cellular response to DNA damage. A fragment-based screening campaign using a combination of a high-concentration AlphaScreen™ kinase assay and a biophysical thermal shift assay, followed by X-ray crystallography, identified a number of chemically different ligand-efficient CHK2 hinge-binding scaffolds that have not been exploited in known CHK2 inhibitors. In addition, it showed that the use of these orthogonal techniques allowed efficient discrimination between genuine hit matter and false positives from each individual assay technology.
View Article and Find Full Text PDFThe aromatic nitroketone 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one; 3-NBA) is an extremely potent mutagen and a suspected human carcinogen detected in the exhaust of diesel engines and in airborne particulate matter. 3-NBA is metabolically activated via reduction of the nitro group to the hydroxylamine (N-OH-3-ABA) to form covalent DNA adducts. Thus far, the detection and quantification of covalent 3-NBA-DNA adducts has relied solely on (32)P-postlabeling methodologies.
View Article and Find Full Text PDF