Facioscapulohumeral muscular dystrophy (FSHD) is caused by loss of repression of the DUX4 gene; however, the DUX4 protein is rare and difficult to detect in human muscle biopsies, and pathological mechanisms are obscure. FSHD is also a chronic disease that progresses slowly over decades. We used the sporadic, low-level, muscle-specific expression of DUX4 enabled by the iDUX4pA-HSA mouse to develop a chronic long-term muscle disease model.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) results from mutations causing overexpression of the transcription factor, DUX4, which interacts with the histone acetyltransferases, EP300 and CBP. We describe the activity of a new spirocyclic EP300/CBP inhibitor, iP300w, which inhibits the cytotoxicity of the DUX4 protein and reverses the overexpression of most DUX4 target genes, in engineered cell lines and FSHD myoblasts, as well as in an FSHD animal model. In evaluating the effect of iP300w on global histone H3 acetylation, we discovered that DUX4 overexpression leads to a dramatic global increase in the total amount of acetylated histone H3.
View Article and Find Full Text PDF