Publications by authors named "Meiqi Xu"

Introduction: Enfortumab vedotin (EV) and Erdafitinib are effective therapeutic drugs for bladder cancer patients following post-chemotherapy and immunotherapy. This study assessed adverse drug reactions (ADRs) from both drugs, comparing their safety profiles to guide clinical use.

Methods: A retrospective descriptive analysis was conducted on ADR reports for EV and Erdafitinib from the World Health Organization (WHO)-VigiAccess database.

View Article and Find Full Text PDF

As an essential biogenic amine in invertebrates, octopamine (OA) regulates multiple physiological and behavioral processes via binding to octopamine receptors (OARs). The small brown planthopper Laodelphax striatellus is an important agricultural pest. However, little is known about OARs in L.

View Article and Find Full Text PDF

Introduction: Stroke, a major global cause of death and disability, has a high recurrence rate that significantly affects patients' physical, psychological, and economic well-being. Despite the importance of health risk perception in preventive measures, most stroke patients struggle to accurately assess the risk of recurrence. Current research on stroke recurrence risk perception is still exploratory, with a lack of systematic understanding of the influencing factors.

View Article and Find Full Text PDF

Energetic coordination compounds (ECCs) have demonstrated unique advantages in regulating the physicochemical properties of energetic materials through the design of organic ligands. The fundamental approach involves altering the electron cloud density distribution of organic ligands to modify the characteristics of coordination sites and, thus, achieve new coordination configurations. In this study, Mulliken charge distribution and surface electrostatic potential analysis were used to elucidate the effects of pyridinic N, pyrrolic N, oxazolic O, and thiazolic S on the electron cloud density of carbohydrazide groups through the induction effect and conjugate effect.

View Article and Find Full Text PDF

We prepared biocompatible and environment-friendly zinc oxide nanoparticles (ZnO NPs) with upconversion properties and catalase-like nanozyme activity. Photodynamic therapy (PDT) application is severely limited by the poor penetration of UV-Visible light and a hypoxic tumor environment. Here, we used ZnO NPs as a carrier for the photosensitizer chlorin e6 (Ce6) to construct zinc oxide-chlorin e6 nanoparticles (ZnO-Ce6 NPs), simultaneously addressing both problems.

View Article and Find Full Text PDF

Improving nanomedicine uptake by tumor cells is key to achieving intracellular drug delivery. In this study, we found that methyl-β-cyclodextrin (MβCD) can significantly promote the intracellular accumulation of nanoparticulated α-linolenic acid-paclitaxel conjugates (ALA-PTX NPs) via enhanced clathrin-mediated endocytosis and limited degradation in lysosomes. Our in vitro results indicated that MβCD not only reduced the plasma membrane cholesterol content and increased plasma membrane fluidity, leading to ALA-PTX NPs being more easily incorporated into the plasma membrane, further enhancing membrane fluidity and making the plasma membrane more susceptible to tensile deformation, forming intracellular vesicles to enhance ALA-PTX NP cellular uptake, but also destroyed lysosomes and then limited ALA-PTX NPs' degradation in lysosomes.

View Article and Find Full Text PDF

Dopamine (DA) is the most abundant biogenic amine present in the insect central nervous system, and regulates multiple functions in physiology and behaviors through dopamine receptors (DARs). The small brown planthopper Laodelphax striatellus is an important agricultural pest and causes serious damage by transmitting diverse plant viruses, such as rice stripe virus (RSV). However, DARs have not yet been molecularly characterized in planthoppers, and their roles in virus infection and transmission remain largely unknown in insect vectors.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has focused on creating advanced energetic materials that have both high stability and excellent energy properties, but balancing these qualities has been challenging.
  • This study presents a new method for making high-energy-density materials by self-assembling purines with high-energy oxidants, leveraging the natural abundance of purines.
  • The resulting materials demonstrate improved crystal densities, superior detonation performance, and reduced sensitivity compared to traditional explosives like RDX, suggesting self-assembly as an effective way to produce safer, high-energy materials.
View Article and Find Full Text PDF

The design of novel energetic compounds constitutes a pivotal research direction within the field of energetic materials. However, exploring the intricate relationship between their molecular structure and properties, in order to uncover their potential applications, remains a challenging endeavor. Therefore, employing multi-molecule assembly techniques to modulate the structure and performance of energetic materials holds immense significance.

View Article and Find Full Text PDF

Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference.

View Article and Find Full Text PDF

The aims of the current review were to identify the current supportive care needs of stroke patients, categorize those needs according to the supportive care needs framework (SCNF), and to form a SCNF of stroke patients. Preferred Reporting Items for Systematic Reviews and Meta-Extension for Scoping Reviews (PRISMA-ScR) and Guidance for conducting systematic scoping reviews were followed. Ten databases were searched, including six English databases: PubMed, Embase, Web of Science, Cumulative Index to Nursing Allied Health Literature, Cochrane Library, and PsycINFO, and four Chinese databases: China National Knowledge Infrastructure, Wan Fang, China Biology Medicine Database and Chongqing VIP.

View Article and Find Full Text PDF

Background: Piriformospora indica is an endophytic fungus that can promote the growth and confer resistance against diverse stresses in host plants by root colonization. However, the effects of P. indica colonization on improving plant resistance to insect pests are still less explored.

View Article and Find Full Text PDF

The rapid and effective identification of anticancer peptides (ACPs) by computer technology provides a new perspective for cancer treatment. In the identification process of ACPs, accurate sequence encoding and effective classification models are crucial for predicting their biological activity. Traditional machine learning methods have been widely applied in sequence analysis, but deep learning provides a new approach to capture sequence complexity.

View Article and Find Full Text PDF

Single case studies of extraordinary disease resilience may provide therapeutic insight into conditions for which no definitive treatments exist. An otherwise healthy 35-year-old man (patient-R) with the canonical pathogenic ACVR1R206H variant and the classic congenital great toe malformation of fibrodysplasia ossificans progressiva (FOP) had extreme paucity of post-natal heterotopic ossification (HO) and nearly normal mobility. We hypothesized that patient-R lacked a sufficient post-natal inflammatory trigger for HO.

View Article and Find Full Text PDF

Multifunctional nanoparticles are of significant importance for synergistic multimodal antitumor activity. Herein, zinc oxide (ZnO) was used as pH-sensitive nanoparticles for loading the chemotherapy agent doxorubicin (DOX) and the photosensitizer agent indocyanine green (ICG), and biocompatible low-molecular-weight heparin (LMHP) was used as the gatekeepers for synergistic photothermal therapy/photodynamic therapy/chemotherapy/immunotherapy. ZnO was decomposed into cytotoxic Zn ions, leading to a tumor-specific release of ICG and DOX.

View Article and Find Full Text PDF
Article Synopsis
  • Revamping energy storage structures can optimize the performance and safety of energetic materials, which is essential for achieving high energy outputs with reduced sensitivity.
  • This research focuses on a new compound, ECCs [Cu(HDMPZCA)(ClO)](ClO)·2HO, that combines ionic salts and coordination compounds for improved properties compared to previous materials.
  • The new compound demonstrates higher oxygen balance and mechanical sensitivity, alongside promising ignition capabilities and explosive power, positioning it as a strong candidate for use as a primary explosive.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving energy storage in energetic compounds to enhance performance while reducing sensitivity, targeting high energy and low sensitivity.* -
  • It introduces a novel energetic coordination compound, Ag(3-HPZCA)(ClO), which combines ionic salts and coordination compounds, marking a first in Ag(I)-based ECCs.* -
  • The compound shows improved properties, including a higher oxygen balance constant and better mechanical sensitivity, with strong explosive capabilities under low-threshold laser initiation, suitable for both primary and secondary explosives.*
View Article and Find Full Text PDF

Combining the advantages of energetic heterocycles to achieve high-energy insensitive explosives is a significant challenge. Herein, based on high-energy tetrazole rings and highly stable 1,3,4-oxadiazole rings, a series of novel nitrogen rich energetic compounds 5-9 were successfully constructed. The related compounds were fully characterized by EA, FT-IR, NMR, DSC, and MS, and compounds 6-9 were further confirmed by X-ray single crystal diffraction.

View Article and Find Full Text PDF

ATP synthase inhibitory factor 1 (ATPIF1) is a mitochondrial protein that regulates the activity of FF-ATP synthase. Mice lacking ATPIF1 throughout their bodies (Atpif1) exhibit a reduction in the number of neutrophils. However, it remains unclear whether the inactivation of ATPIF1 impairs the antibacterial function of mice, this study aimed to evaluate it using a mouse peritonitis model.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are non-invasive treatment methods with obvious inhibitory effect on tumors and have few side effects, which have been widely concerned and explored by researchers. Sensitizer is the main factor in determining the therapeutic effect of PDT and SDT. Porphyrins, a group of organic compounds widespread in nature, can be activated by light or ultrasound and produce reactive oxygen species.

View Article and Find Full Text PDF

A 54-year-old man with a history of unimelic, post-traumatic multifocal heterotopic ossification (HO) and normal genetic analysis of ACVR1 and GNAS had variants of unknown significance (VUS) in PDLIM-7 (PDZ and LIM Domain Protein 7), the gene encoding LMP-1 (LIM Mineralization Protein-1), an intracellular protein involved in the bone morphogenetic protein (BMP) pathway signaling and ossification. In order to determine if the LMP-1 variants were plausibly responsible for the phenotype observed, a series of in vitro experiments were conducted. C2C12 cells were co-transfected with a BMP-responsive reporter as well as the LMP-1 wildtype (wt) construct or the LMP-1 or the LMP-1 constructs (herein designated as LMP-161 or LMP-181) corresponding to the coding variants detected in the patient.

View Article and Find Full Text PDF

Encoded by the gene, menin protein is a fusion protein that is essential for the oncogenic transformation of mixed-lineage leukemia (MLL) and leads to acute leukemia (AL). Therefore, accumulating evidence has demonstrated that inhibition of the high-affinity relationship between menin and mixed-lineage leukemia 1 (MLL1 and KMT2A) is an effective treatment for MLL-rearranged (MLL-r) leukemia in vitro and in vivo. Meanwhile, recent studies found that menin-MLL1 interaction inhibitors exhibited a firm tumor suppressive ability in specific cancer cells, such as prostate cancer, breast cancer, liver cancer, and lung cancer.

View Article and Find Full Text PDF

Various metal oxide nanomaterials have been widely used as carriers to prepare pH-sensitive nanomedicines to respond to the acidic tumor microenvironment promoting antitumor efficiency. Herein, we used zinc oxide nanoparticles (ZnO NPs) as metal oxide nanomaterial coated with low-molecular-weight heparin (LMHP) and doxorubicin (DOX) complex (LMHP-DOX) to prepare ZnO-LD NPs for controllable pH-triggered DOX release on the targeted site. Our results indicated that the released DOX from ZnO-LD NPs was pH-sensitive.

View Article and Find Full Text PDF

ATP synthase inhibitory factor 1 (ATPIF1) is a mitochondrial protein with an activity in inhibition of FF-ATP synthase. ATPIF1 activity remains unknown in the control of immune activity of T cells. In this study, we identified ATPIF1 activity in the induction of CD8 T cell function in tumor models through genetic approaches.

View Article and Find Full Text PDF

Introduction And Objectives: It is well known that the quality of life (QoL) of patients with chronic hepatitis C (HCV) is lower than that of the general population and that therapy with direct-acting antivirals (DAA) for HCV is safe and effective. However, data on the QoL of patients are scanty. The purpose of this study was to assess the effect of DAA drugs on patients' QoL.

View Article and Find Full Text PDF