Publications by authors named "Meiqi Niu"

Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions.

View Article and Find Full Text PDF

The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.

View Article and Find Full Text PDF

Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α receptors.

View Article and Find Full Text PDF

Dynamics and functions of neural circuits depend on interactions mediated by receptors. Therefore, a comprehensive map of receptor organization across cortical regions is needed. In this study, we used in vitro receptor autoradiography to measure the density of 14 neurotransmitter receptor types in 109 areas of macaque cortex.

View Article and Find Full Text PDF

Introduction: Previous fMRI studies revealed that the abnormal functional connectivity (FC) was related to cognitive impairment in patients with SLE. However, it remains unclear how the disease severity affects the functional topological organization of the whole-brain network in SLE patients without neuropsychiatric symptoms (non-NPSLE).

Objective: We aim to examine the impairment of the whole-brain functional network in SLE patients without neuropsychiatric symptoms (non-NPSLE), which may improve the understanding of neural mechanism in SLE.

View Article and Find Full Text PDF

The angular gyrus roughly corresponds to Brodmann's area 39, which is a multimodal association brain region located in the posterior apex of the human inferior parietal lobe, at its interface with the temporal and occipital lobes. It encompasses two cyto- and receptor architectonically distinct areas: caudal PGp and rostral PGa. The macaque brain does not present an angular gyrus in the strict sense, and the establishment of homologies was further hindered by the fact that Brodmann defined a single cytoarchitectonic area covering the entire guenon inferior parietal lobule in the monkey brain, i.

View Article and Find Full Text PDF

Existing cytoarchitectonic maps of the human and macaque posterior occipital cortex differ in the number of areas they display, thus hampering identification of homolog structures. We applied quantitative in vitro receptor autoradiography to characterize the receptor architecture of the primary visual and early extrastriate cortex in macaque and human brains, using previously published cytoarchitectonic criteria as starting point of our analysis. We identified 8 receptor architectonically distinct areas in the macaque brain (mV1d, mV1v, mV2d, mV2v, mV3d, mV3v, mV3A, mV4v), and their respective counterpart areas in the human brain (hV1d, hV1v, hV2d, hV2v, hV3d, hV3v, hV3A, hV4v).

View Article and Find Full Text PDF

Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types.

View Article and Find Full Text PDF

The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses.

View Article and Find Full Text PDF

In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders.

View Article and Find Full Text PDF

The default mode network (DMN) reflects spontaneous activity in the resting human brain. Previous studies examined the difference in static functional connectivity (sFC) of the DMN between eyes-closed (EC) and eyes-open (EO) using the resting-state functional magnetic resonance imaging (rs-fMRI) data. However, it remains unclear about the difference in dynamic FC (dFC) of the DMN between EC and EO.

View Article and Find Full Text PDF

Previous studies showed that the onset age of second language acquisition (AoA-L2) can modulate brain structure of bilinguals. However, the underlying mechanism of anatomical plasticity induced by AoA-L2 is still a question in debate. In order to explore the issue, we recruited two groups of native Cantonese-Mandarin speakers, the early group began to speak in Mandarin at about 3.

View Article and Find Full Text PDF

The brain representation of language in bilinguals is sculptured by several factors, such as age of acquisition (AoA) and proficiency level (PL) in second language. Although the effect of AoA-L2 on brain function and structure has been studied, little attention is devoted to dynamic properties of the language network and their differences between early and late bilinguals. In this study, we acquired resting-state fMRI data from early and late Cantonese (L1)-Mandarin (L2) bilinguals with high PLs of verbal fluency in both languages.

View Article and Find Full Text PDF

The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd.

View Article and Find Full Text PDF

Background: Schizophrenia (SCZ) is a highly heritable disorder associated with brain connectivity changes. Although the mechanism of disease expression and vulnerability of SCZ have been reported by previous studies, the mechanism of resilience to SCZ based on the brain structural connectivity is poorly understood. The goal of the present study was to identify the structural brain connectivity related with the resilience to SCZ, which is defined here as the capacity to avoid or delay the onset of SCZ in unaffected siblings of SCZ probands.

View Article and Find Full Text PDF

The macaque monkey superior parietal lobule (SPL) is part of a neuronal network involved in the integration of information from visual and somatosensory cortical areas for execution of reaching and grasping movements. We applied quantitative in vitro receptor autoradiography to analyse the distribution patterns of 15 different receptors for glutamate, GABA, acetylcholine, serotonin, dopamine, and adenosine in the SPL of three adult male Macaca fascicularis monkeys. For each area, mean (averaged over all cortical layers) receptor densities were visualized as a receptor fingerprint of that area.

View Article and Find Full Text PDF

Differential brain structural abnormalities between bipolar disorder (BD) and major depressive disorder (MDD) may reflect different pathological mechanisms underlying these two brain disorders. However, few studies have directly compared the brain structural properties, especially in white matter (WM) tracts, between BD and MDD. Using automated fiber-tract quantification (AFQ), we utilized diffusion tensor images (DTI) from 67 unmedicated depressed patients, including 31 BD and 36 MDD, and 45 healthy controls (HC) to create fractional anisotropy (FA) tract profiles along 20 major WM tracts.

View Article and Find Full Text PDF

Early second language (L2) experience influences the neural organization of L2 in neuro-plastic terms. Previous studies tried to reveal these plastic effects of age of second language acquisition (AoA-L2) and proficiency-level in L2 (PL-L2) on the neural basis of language processing in bilinguals. Although different activation patterns have been observed during language processing in early and late bilinguals by task-fMRI, few studies reported the effect of AoA-L2 and high PL-L2 on language network at resting state.

View Article and Find Full Text PDF

Identifying brain differences and similarities between bipolar disorder (BD) and major depressive disorder (MDD) is necessary for increasing our understanding of the pathophysiology and for developing more effective treatments. However, the features of whole-brain intrinsic functional connectivity underlying BD and MDD have not been directly compared. We collected resting-state fMRI data from 48 BD patients, 48 MDD patients, and 51 healthy subjects.

View Article and Find Full Text PDF

To detect the abnormal cortical thickness and disrupted brain resting-state functional connectivity (RSFC) in patients with systemic lupus erythematosus (SLE) without neuropsychiatric symptoms (non-NPSLE). Using T1-weighted 3D brain structural data, we first determined the regions with abnormal cortical thickness in a cohort of 33 adult female non-NPSLE patients. By taking brain regions with significantly reduced cortical thickness as the seeds, we calculated their RSFC based on the resting-fMRI data and detected the relationship between the RSFC and cortical thickness in the non-NPSLE patients.

View Article and Find Full Text PDF

Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC) in years after radiotherapy (RT) could involve brain gray matter (GM) and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT) NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED), and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD), and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT.

View Article and Find Full Text PDF

Previous neuroimaging studies have revealed cognitive dysfunction in patients with systemic lupus erythematosus (SLE) and suggested that it may be related to disrupted brain white matter (WM) connectivity. However, no study has examined the topological properties of brain WM structural networks in SLE patients, especially in patients with non-neuropsychiatric SLE (non-NPSLE). In this study, we acquired DTI datasets from 28 non-NPSLE patients and 24 healthy controls, constructed their brain WM structural networks by using a deterministic fiber tracking approach, estimated the topological parameters of their structural networks, and compared their group differences.

View Article and Find Full Text PDF

Major depressive disorder (MDD) and bipolar disorder (BD) are severe psychiatric diseases with overlapping symptomatology. Although previous studies reported abnormal brain structures in MDD or BD patients, the disorder-specific underlying neural mechanisms remain poorly understood. The purpose of this study was to investigate the whole-brain gray matter morphological patterns in unmedicated patients with MDD or BD and to identify the shared and disease-specific brain morphological alterations in these two disorders.

View Article and Find Full Text PDF