A DPD deficiency should be considered in case of severe toxicity even in the absence of common risk variants in DPYD.
View Article and Find Full Text PDFPurpose: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system.
Methods: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome.
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, ammonia and CO. To date, only a limited number of genetically confirmed patients with a complete β-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified β-ureidopropionase deficient individuals.
View Article and Find Full Text PDFBackground: The therapeutic use of [I]meta-iodobenzylguanidine ([I]MIBG) is often accompanied by hematological toxicity, primarily consisting of severe and persistent thrombocytopenia. We hypothesize that this is caused by selective uptake of MIBG via the serotonin transporter (SERT) located on platelets and megakaryocytes. In this study, we have investigated whether in vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG and whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent this radiotoxic MIBG uptake.
View Article and Find Full Text PDFBackground: The therapeutic use of [I]meta-iodobenzylguanidine ([I]MIBG) is often accompanied by hematological toxicity, mainly consisting of persistent and severe thrombocytopenia. While MIBG accumulates in neuroblastoma cells via selective uptake by the norepinephrine transporter (NET), the serotonin transporter (SERT) is responsible for cellular uptake of MIBG in platelets. In this study, we have investigated whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent radiotoxic MIBG uptake in platelets without affecting neuroblastoma tumor uptake.
View Article and Find Full Text PDFPyrimidine nucleotides are essential for a vast number of cellular processes and dysregulation of pyrimidine metabolism has been associated with a variety of clinical abnormalities. Inborn errors of pyrimidine metabolism affecting enzymes in the pyrimidine de novo and degradation pathway have been identified but no patients have been described with a deficiency in proteins affecting the cellular import of ribonucleosides. In this manuscript, we report the elucidation of the genetic basis of the observed uridine-cytidineuria in a patient presenting with fever, hepatosplenomegaly, persistent lactate acidosis, severely disturbed liver enzymes and ultimately multi-organ failure.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) deficiency is a rare autosomal recessive disorder of the pyrimidine degradation pathway and can lead to intellectual disability, motor retardation, and seizures. Genetic variations in DPYD have also emerged as predictive risk factors for severe toxicity in cancer patients treated with fluoropyrimidines. We recently observed a child born to non-consanguineous parents, who demonstrated seizures, cognitive impairment, language delay, and MRI abnormalities and was found to have marked thymine-uraciluria.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) deficiency is associated with a variable clinical presentation. A family with three DPD-deficient patients presented with unusual clinical phenotypes including pregnancy-induced symptoms, transient visual impairment, severe developmental delay, cortical blindness, and delayed myelination in the brain. DPYD Sanger sequencing showed heterozygosity for the c.
View Article and Find Full Text PDFDihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyzes the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 31 genetically confirmed patients with a DHP deficiency have been reported and the clinical, biochemical and genetic spectrum of DHP deficient patients is, therefore, still largely unknown. Here, we show that 4 newly identified DHP deficient patients presented with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in urine and a highly variable clinical presentation, ranging from asymptomatic to infantile spasm and reduced white matter and brain atrophy.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of pyrimidine metabolism that impairs the first step of uracil und thymine degradation. The spectrum of clinical presentations in subjects with the full biochemical phenotype of DPD deficiency ranges from asymptomatic individuals to severely affected patients suffering from seizures, microcephaly, muscular hypotonia, developmental delay and eye abnormalities.We report on a boy with intellectual disability, significant impairment of speech development, highly active epileptiform discharges on EEG, microcephaly and impaired gross-motor development.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2016
Uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine, cytidine, and several pyrimidine ribonucleoside analogs. We overexpressed and purified the two known isoforms of human UCK in Escherichia coli, produced a specific antibody against UCK1 and characterized the kinetic properties of UCK1 and 2. The V of purified recombinant UCK2 was 22- and 8-fold higher with uridine and cytidine, respectively, compared to those observed for the purified recombinant UCK1 enzyme.
View Article and Find Full Text PDFFluorocyclopentenylcytosine (RX-3117) is an orally available cytidine analog, currently in Phase I clinical trial. RX-3117 has promising antitumor activity in various human tumor xenografts including gemcitabine resistant tumors. RX-3117 is activated by uridine-cytidine kinase (UCK).
View Article and Find Full Text PDFUridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine and cytidine as well as the pharmacological activation of several cytotoxic pyrimidine ribonucleoside analogues. In this study, we investigated the functional role of two isoforms of UCK in neuroblastoma cell lines. Analysis of mRNA coding for UCK1 and UCK2 showed that UCK2 is the most abundantly expressed UCK in a panel of neuroblastoma cell lines.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil, thymine and the antineoplastic agent 5-fluorouracil. Genetic variations in the gene encoding DPD (DPYD) have emerged as predictive risk alleles for 5FU-associated toxicity. Here we report an in-depth analysis of genetic variants in DPYD and their consequences for DPD activity and pyrimidine metabolites in 100 Dutch healthy volunteers.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of the pyrimidine metabolism. Deficiency of this enzyme leads to an accumulation of thymine and uracil and a deficiency of metabolites distal to the catabolic enzyme. The disorder presents with a wide clinical spectrum, ranging from asymptomatic to severe neurological manifestations, including intellectual disability, seizures, microcephaly, autistic behavior, and eye abnormalities.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
February 2015
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and it catalyzes the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, respectively, and ammonia and CO2. To date, only 16 genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report the clinical, biochemical, and molecular analysis of a newly identified patient with β-ureidopropionase deficiency.
View Article and Find Full Text PDFβ-ureidopropionase (βUP) deficiency is an autosomal recessive disease characterized by N-carbamyl-β-amino aciduria. To date, only 16 genetically confirmed patients with βUP deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 13 Japanese βUP deficient patients.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
July 2014
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and it catalyzes the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, respectively, and ammonia and CO2. To date, only 16 genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report the clinical, biochemical, and molecular analysis of a newly identified patient with β-ureidopropionase deficiency.
View Article and Find Full Text PDFß-ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyzes the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO(2). To date, only five genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 11 newly identified ß-ureidopropionase deficient patients as well as the analysis of the mutations in a three-dimensional framework.
View Article and Find Full Text PDFThe efficacy and mechanism of action of cisplatin and gemcitabine were investigated in a panel of neuroblastoma cell lines and multicellular tumor spheroids. In neuroblastoma spheroids, the combination of cisplatin and gemcitabine induced a complete cytostasis at clinical relevant concentrations. A synergistic effect was observed when cells were coincubated with both drugs or preincubated with gemcitabine first.
View Article and Find Full Text PDFDihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
June 2010
Dihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disorder of the pyrimidine degradation pathway. In a patient presenting with convulsions, psychomotor retardation and Reye like syndrome, strongly elevated levels of uracil and thymine were detected in urine. No DPD activity could be detected in peripheral blood mononuclear cells.
View Article and Find Full Text PDFDihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 11 individuals have been reported suffering from a complete DHP deficiency. Here, we report on the clinical, biochemical and molecular findings of 17 newly identified DHP deficient patients as well as the analysis of the mutations in a three-dimensional framework.
View Article and Find Full Text PDF