Publications by authors named "Meineng Wang"

The advent of single-cell RNA sequencing (scRNA-seq) has brought forth fresh perspectives on intricate biological processes, revealing the nuances and divergences present among distinct cells. Accurate single-cell analysis is a crucial prerequisite for in-depth investigation into the underlying mechanisms of heterogeneity. Due to various technical noises, like the impact of dropout values, scRNA-seq data remains challenging to interpret.

View Article and Find Full Text PDF

Increasing evidences suggest that miRNAs play a key role in the occurrence and progression of many complex human diseases. Therefore, targeting dysregulated miRNAs with small molecule drugs in the clinical has become a new treatment. Nevertheless, it is high cost and time-consuming for identifying miRNAs-targeted with drugs by biological experiments.

View Article and Find Full Text PDF

Background: Associations of drugs with diseases provide important information for expediting drug development. Due to the number of known drug-disease associations is still insufficient, and considering that inferring associations between them through traditional in vitro experiments is time-consuming and costly. Therefore, more accurate and reliable computational methods urgent need to be developed to predict potential associations of drugs with diseases.

View Article and Find Full Text PDF

Accumulating evidence indicated that the interaction between lncRNA and miRNA is crucial for gene regulation, which can regulate gene transcription, further affecting the occurrence and development of many complex diseases. Accurate identification of interactions between lncRNAs and miRNAs is helpful for the diagnosis and therapeutics of complex diseases. However, the number of known interactions of lncRNA with miRNA is still very limited, and identifying their interactions through biological experiments is time-consuming and expensive.

View Article and Find Full Text PDF

Accumulating evidences show that circular RNAs (circRNAs) play an important role in regulating gene expression, and involve in many complex human diseases. Identifying associations of circRNA with disease helps to understand the pathogenesis, treatment and diagnosis of complex diseases. Since inferring circRNA-disease associations by biological experiments is costly and time-consuming, there is an urgently need to develop a computational model to identify the association between them.

View Article and Find Full Text PDF

Background: lncRNAs play a critical role in numerous biological processes and life activities, especially diseases. Considering that traditional wet experiments for identifying uncovered lncRNA-disease associations is limited in terms of time consumption and labor cost. It is imperative to construct reliable and efficient computational models as addition for practice.

View Article and Find Full Text PDF

Because of the ability to metabolize a large number of electron acceptors such as nitrate, nitrite, fumarate, and metal oxides, species have attracted much attention in recent years. Generally, the use of these electron acceptors is mainly achieved through electron transfer proteins and their interactions which will dynamically change across different environmental conditions in cells. Therefore, functional analysis of condition-specific molecular networks can reveal biological information on electron transfer processes.

View Article and Find Full Text PDF

Background: The interactions between non-coding RNAs (ncRNA) and proteins play an essential role in many biological processes. Several high-throughput experimental methods have been applied to detect ncRNA-protein interactions. However, these methods are time-consuming and expensive.

View Article and Find Full Text PDF