Publications by authors named "Meina Huang"

Utilization of microbial hosts to produce natural plant products is regarded as a promising and sustainable approach. However, achieving highly efficient production of terpenoids using microorganisms remains a significant challenge. Here, mevalonate, a building block of terpenoids, was used as a demo product to explore the potential metabolic constraints for terpenoid biosynthesis in .

View Article and Find Full Text PDF

Dietary restriction of l-methionine, an essential amino acid, exerts potent antitumor effects on l-methionine-dependent cancers. However, dietary restriction of l-methionine has not been practical for human therapy because of the problem with the administration of l-methionine concentration in foods. Here, a thermophilic methionine γ-lyase (MGL), that catalyzes the cleavage of the C-S bond in l-methionine to produce α-ketobutyric acid, methanethiol, and ammonia was engineered from human cystathionine γ-lyase and almost completely depleted l-methionine at 65 °C, a temperature that accelerates the volatilization of methanethiol and its oxidation products.

View Article and Find Full Text PDF

Perioperative hyperoxia therapy is of great significance to save the lives of patients, but little is known about the possible mechanisms that induce hyperoxia-induced acute lung injury (HALI) and the measures for clinical prevention and treatment. In this experiment, the models were established with a feeding chamber with automatic regulation of oxygen concentration. The results showed that with the increase in inhaled oxygen concentration and the prolongation of exposure time, the severity of lung injury also increases significantly, reaching the diagnostic indication of HALI after 48 h of inhaling 95 % oxygen concentration.

View Article and Find Full Text PDF

Photocatalytic oxidation (PCO) based on semiconductors offers a sustainable and promising way for environmental remediation. However, the photocatalytic performance currently suffers from weak light-harvesting ability, rapid charge combination and a lack of accessible reactive sites. Ultrathin two-dimensional (2D) materials are ideal candidates to overcome these problems and become hotpots in the research fields.

View Article and Find Full Text PDF

The switch from mitosis to meiosis ensures the successive formation of gametes. However, it remains unclear how meiotic initiation occurs within the context of chromatin. Recent studies have shown that zinc finger HIT-type containing 1 (Znhit1), a subunit of the SRCAP chromatin remodeling complex, plays essential roles in modulating the chromatin structure.

View Article and Find Full Text PDF

The WNT signaling pathway plays a crucial role in oviduct/fallopian development. However, the specific physiological processes regulated by the WNT pathway in the fallopian/oviduct function remain obscure. Benefiting from the knockout mouse model, we report the regulation of oviduct epithelial secretion by LGR4.

View Article and Find Full Text PDF

Objective: To investigate the expression of chromobox 2 (CBX2) in colorectal adenoma (CRA) and colorectal cancer (CRC), and analyse its correlation with various clinicopathological parameters.

Study Design: Observational study.

Place And Duration Of Study: Pathology Department, Huashan Hospital, Fudan University, from December 2019 to December 2020.

View Article and Find Full Text PDF

Background: Colorectal adenoma (CRA) is a classical premalignant lesion, with high incidence and mainly coexisting with hyperplastic polyp (HPP). Hence, this study aimed to distinguish CRA from HPP by molecular expression profiling and advance the prevention of CRA and its malignance.

Methods: CRA and paired HPP biopsies were collected by endoscopy.

View Article and Find Full Text PDF

Bioimaging and biosensing have garnered interest in early cancer diagnosis due to the ability of gaining in-depth insights into cellular functions and providing a wide range of diagnostic parameters. Emerging 2D materials of multielement MXenes and monoelement black phosphorous nanosheets (BPNSs) with unique intrinsic physicochemical properties such as a tunable bandgap and layer-dependent fluorescence, high carrier mobility and transport anisotropy, efficient fluorescence quenching capability, desirable light absorption and thermoelastic properties, and excellent biocompatibility and biosafety properties provide promising nano-platforms for bioimaging and biosensing applications. In view of the growing attention on the rising stars of the post-graphene age in the progress of bioimaging and biosensing, and their common feature characteristics as well as complementarity for constructing complexes, the main objective of this review is to reveal the recent advances in the design of MXene or BPNS based nanoplatforms in the field of bioimaging and biosensing.

View Article and Find Full Text PDF

Berberine (BBR) has a neuroprotective effect against ischemic stroke, but its specific protective mechanism has not been clearly elaborated. This study explored the effect of BBR on the canopy FGF signaling regulator 2 (CNPY2) signaling pathway in the ischemic penumbra of rats. The model of cerebral ischemia-reperfusion injury (CIRI) was established by the thread embolization method, and BBR was gastrically perfused for 48 h or 24 h before operation and 6 h after operation.

View Article and Find Full Text PDF

Intestinal exocrine secretory lineages, including goblet cells and Paneth cells, provide vital innate host defense to pathogens. However, how these cells are specified and maintained to ensure intestinal barrier function remains poorly defined. Here we show that endoplasmic reticulum membrane protein complex subunit 3 (Emc3) is essential for differentiation and function of exocrine secretory lineages.

View Article and Find Full Text PDF

A metal-complex-modified graphitic carbon nitride (g-CN) bulk heterostructure is presented here as a promising alternative to high-cost noble metals as artificial photocatalysts. Theoretical and experimental studies of the spectral and physicochemical properties of three structurally similar molecules , , and confirm that the Pt(II) acetylide group effectively expands the electron delocalization and adjusts the molecular orbital levels to form a relatively narrow bandgap. Using these molecules, the donor-acceptor assemblies @, @, and @ are formed with g-CN.

View Article and Find Full Text PDF

Aggregation induced emission (AIE)-active bright two-photon fluorescent probes with second near-infrared (NIR-II) light excitability can be used for efficient brain bioimaging studies, wherein the fabrication of water-dispersible nanoparticles by encapsulating the hydrophobic probes with amphiphilic polymer holds the key to ensuring biocompatibility and adaptability. However, barely any study has evaluated the structural requirements that can substantially affect the water-dispersible nanoparticle formation ability of an organic AIE-active dye with amphiphilic polymers. The present study systematically assessed the structural dependency of a well-known acrylonitrile based AIE system/fluorogenic core upon the formation of water-dispersible nanoparticles and elucidated how the structural modifications can impact the two-photon imaging.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles with interconnected tubule structures that are sensitive to environmental stress and light illumination. Super-resolution optical imaging of mitochondrial dynamics is of significance for understanding such biological events. Direct stochastic optical reconstruction microscopy has the advantages of a high spatial resolution, low phototoxicity in live-cell imaging, and the capacity to incorporate smart fluorescent probes.

View Article and Find Full Text PDF

As a new method of cell-cell communication, tunneling nanotubes (TNTs) play important roles in cell-cell signaling and mass exchanges. However, a lack of powerful tools to visualize dynamic TNTs with high temporal/spatial resolution restricts the exploration of their formation and cleavage, hindering the complete understanding of its mechanism. Herein, we present the first example of using stochastic optical reconstruction microscopy (STORM) to observe the tube-like structures of TNTs linking live cells with an easily prepared fluorescent dye.

View Article and Find Full Text PDF

Two probes, AIE-1 and AIE-2, were synthesized to investigate the effect of substitutional functional group on aggregation (aggregation-caused quenching (ACQ) or aggregation-induced emission (AIE)) and intramolecular charge transfer (ICT) behavior as well as on the cell imaging aspect. The yellow-color non-substituted probe AIE-1 showed weak charge-transfer absorption and an emission band at 377 nm and 432 nm, whereas the yellowish-orange color substituted probe AIE-2 showed a strong charge-transfer absorption and an emission band at 424 nm and 477 nm in THF solvent. The UV-Vis studies of AIE-1 and AIE-2 in THF and THF with different water fractions showed huge absorption changes in AIE-2 with high water fractions due to its strong aggregation behavior, but no such noticeable absorption changes were observed for AIE-1.

View Article and Find Full Text PDF

A versatile twisted-intramolecular-charge-transfer (TICT)-based near-infrared (NIR) fluorescent probe () has been judiciously designed and synthesized that could be utilized for potential cancer diagnosis and to track lymph node(s) in mice through distinct emission signals. Essentially, the probe rendered the capability to preferentially recognize the cancer cells over the noncancer cells by polarity-guided lipid droplet specific differential bioimaging (in green emission channel) studies. The probe also exhibited selective turn-on fluorescence response toward HSA/BSA in physiological media (aqueous PBS buffer; pH 7.

View Article and Find Full Text PDF

The present study aimed to investigate the antispasmodic effect of higenamine on cold-induced cutaneous vasoconstriction and the underlying molecular mechanisms. A cold-induced cutaneous vasoconstriction rat model was established and different doses of higenamine were delivered by intravenous injection. The changes of cutaneous regional blood flow (RBF) between groups were analyzed.

View Article and Find Full Text PDF

Lysosomes, an important organelle of eukaryotic cells, are covered with the cell membrane and contain an array of degradative enzymes. The disrupt in lysosomal functions may lead to the development of severe diseases. In nanotechnology, nanomaterials working mechanism and its biomedical output are highly dependent on the lysosomes as it plays a crucial role in intracellular transport.

View Article and Find Full Text PDF

Glass fiber reinforced polyolefin composite materials have many advantages regarding their performance and have been widely used in many fields. However, there are few reports on the simultaneously bidirectional self-enhancement of glass fiber reinforced polyethylene/polypropylene composite pipe. To self-reinforce the pipe's circular and axial properties simultaneously, short glass fiber reinforced high-density polyethylene/polypropylene (SGF/HDPE/PP) pipes were extruded using a shearing-drawing two-dimensional compound stress field pipe-extrusion device.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans (HSPGs) have been shown to regulate various developmental processes. However, the function of heparan sulfate (HS) during the development of mammalian stomach has not been characterized yet. Here, we investigate the role of epithelial HS in embryonic stomach by examining mice deficient in the glycosyltransferase gene We show that HS exhibits a specific and dynamic expression pattern in mouse embryonic stomach.

View Article and Find Full Text PDF

Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells.

View Article and Find Full Text PDF

The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects.

View Article and Find Full Text PDF

This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent.

View Article and Find Full Text PDF

The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La(3+) in sodalite cage is much better than that of AE(2+) and about 12 La(3+) can be well coordinated in sodalite cages of one unit cell of Y zeolite.

View Article and Find Full Text PDF