Publications by authors named "Meili Wen"

Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit , a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of (BMS-986158) with excellent potency in binding and functional assays.

View Article and Find Full Text PDF

Rapid urbanization and increasing population have widely caused the urban heat island effect. Due to the decreasing distance between cities, there is an urgent need to reevaluate regional heat island intensity (RHII) in an urban agglomeration scale by considering all cities together instead of from conventional single city perspective. Using cropland land surface temperature as the reference temperature, we assessed the diurnal and seasonal RHII variations in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) urban agglomeration in South China.

View Article and Find Full Text PDF

Ecosystem services (ESs) are increasingly affected by human interventions, and the ES balance between supply and demand plays a vital role in guaranteeing the expected efficacy of ecosystem restoration projects. However, the spatial disparities of ES balance, along with its determinants and spillover effects, remain unclear, constraining effective ES management and landscape planning. The aim of this study was to fill these gaps by quantifying the ES balance in the restoring Loess Plateau using an expert-based ES matrix approach and by examining the spatial associations between ES balance and driving factors via an integrated regression approach.

View Article and Find Full Text PDF

The Ecosystem Restoration Project (ERP) is a critical and urgent practice to achieve the land degradation neutrality (LDN) targets. However, an insufficient understanding of the balance between contrasting sectors of the food-water-ecosystem nexus results in ineffectiveness in supporting complex environmental management (CEM), leading to undesirable ERP failures. The Ordos Plateau case identified the nexus evolution and the non-linear interactions between sectors, which were expected to support adaptive strategy formulations for CEM and achieve win-win outcomes.

View Article and Find Full Text PDF

Soil erosion threatens environmental sustainability worldwide. Exploring the trajectories of soil erosion and associated drivers is of great significance for combating land degradation. This study selected the highly eroded Loess Plateau (LP) and Karst Plateau (KP) as contrasting regions to monitor soil erosion dynamics.

View Article and Find Full Text PDF

Ecological restoration program (ERP) is widely recognized as an effective measure to combat land degradation and improve environmental quality. However, inappropriate ERPs lead to trade-offs between soil retention and water yield as well as conflicts of soil and water resources between the midstream and the downstream of catchment. This study aims to assess the efficiency of ERPs in soil erosion control and identify the trade-offs between soil retention and water yield through the lens of runoff and sediment regimes in contrasting catchments of the Loess Plateau (LP) and the Karst Plateau (KP).

View Article and Find Full Text PDF

Land degradation is one of the most serious environmental problems worldwide. To combat land degradation, China has implemented a series of ecological restoration programs (ERPs). This study selected the northern dryland of China as a case study to examine the efficiency of ERPs, and the response of soil loss to afforestation efforts and climatic conditions was discussed using the principles from the ecological theory of non-linear ecosystem dynamics.

View Article and Find Full Text PDF

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

View Article and Find Full Text PDF

This Letter describes synthesis, SAR, and biological activity of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides as inhibitors of γ-secretase mediated signaling of Notch receptors. Optimization of this series led to the identification of BMS-871 (compound 30) which displayed robust in vivo efficacy in Notch-dependent leukemia and solid tumor xenograft models.

View Article and Find Full Text PDF

For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration.

View Article and Find Full Text PDF

Purpose: Angiogenesis is a critical step in the establishment, growth, and metastasis of solid tumors, and combination of antiangiogenic agents with chemotherapy is an attractive therapeutic option. We investigated the potential of ixabepilone, the first in a new class of antineoplastic agents known as epothilones, to synergize with antiangiogenic agents to inhibit tumor growth.

Experimental Design: In vitro and in vivo cytotoxicity of ixabepilone as single agent and in combination with two targeted antiangiogenic agents, bevacizumab or sunitinib, were examined in preclinical tumor models.

View Article and Find Full Text PDF

Purpose: Dasatinib (BMS-354825) is a potent, oral multi-targeted kinase inhibitor. It is an effective therapy for patients with imatinib-resistant or -intolerant Ph+ leukemias,. It has demonstrated promising preclinical anti-tumor activity, and is under clinical evaluation in solid tumors.

View Article and Find Full Text PDF

Purpose: Chronic myeloid leukemia (CML) is caused by reciprocal translocation between chromosomes 9 and 22, forming BCR-ABL, a constitutively activated tyrosine kinase. Imatinib mesylate, a selective inhibitor of BCR-ABL, represents current frontline therapy for CML; however, emerging evidence suggests that drug resistance to imatinib may limit its long-term success. To improve treatment options, dasatinib (BMS-354825) was developed as a novel, oral, multi-targeted kinase inhibitor of BCR-ABL and SRC family kinases.

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTK) remain an area of therapeutic interest because of their role in epithelial tumors, and experimental models specific to these targets are highly desirable. Chimeric receptors were prepared by in-frame fusion of the CD8 extracellular sequence with the cytoplasmic sequences of RTKs. A CD8HER2 fusion protein was shown to form disulfide-mediated homodimers and to transform fibroblasts and epithelial cells.

View Article and Find Full Text PDF

The insulin-like growth factor I receptor (IGF-IR) is a transmembrane tyrosine kinase that is essential to growth and development and also thought to provide a survival signal for the maintenance of the transformed phenotype. There has been increasing interest in further understanding the role of IGF-I signaling in cancer and in developing receptor antagonists for therapeutic application. We describe herein a novel animal model that involves transgenic expression of a fusion receptor that is constitutively activated by homodimerization.

View Article and Find Full Text PDF

A series of substituted 2-(aminopyridyl)- and 2-(aminopyrimidinyl)thiazole-5-carboxamides was identified as potent Src/Abl kinase inhibitors with excellent antiproliferative activity against hematological and solid tumor cell lines. Compound 13 was orally active in a K562 xenograft model of chronic myelogenous leukemia (CML), demonstrating complete tumor regressions and low toxicity at multiple dose levels. On the basis of its robust in vivo activity and favorable pharmacokinetic profile, 13 was selected for additional characterization for oncology indications.

View Article and Find Full Text PDF

BMS-214662 and BMS-225975 are tetrahydrobenzodiazepine-based farnesyltransferase inhibitors (FTIs) that have nearly identical structures and very similar pharmacological profiles associated with farnesyltransferase (FT) inhibition. Despite their similar activity against FT in vitro and in cells, these compounds differ dramatically in their apoptotic potency and tumor-regressing activity in vivo. BMS-214662 is the most potent apoptotic FTI known and exhibits curative responses in mice bearing a variety of staged human tumor xenografts such as HCT-116 human colon tumor.

View Article and Find Full Text PDF