Publications by authors named "Meili Dong"

We have proposed a novel single-snapshot spatial frequency domain imaging method with synchronous three-dimensional (3D) profile correction that addresses the confounding effects of involuntary jitter in tissue under examination and the 3D profile of the tissue on the measurements of optical parameters during in vivo examinations. I. In this scheme, orthogonal composite sinusoidal modulated light is projected onto the tissue to be measured.

View Article and Find Full Text PDF

The peripheral retinal refractive state plays an important role in eye growth and development and is closely related to the development of myopia. Existing methods for measuring the peripheral retinal refractive state are cumbersome and can only detect in a limited range. To address the above shortcomings, this paper proposes a retinal refractive state detection method using optical refractive compensation imaging.

View Article and Find Full Text PDF

There is an urgent need for a mass population screening tool for diabetes. Skin tissue contains a large number of endogenous fluorophores and physiological parameter markers related to diabetes. We built an excitation-emission spectrum measurement system with the excited light sources of 365, 395, 415, 430, and 455 nm to extract skin characteristics.

View Article and Find Full Text PDF

There is a great demand for the rapid and non-invasive atherosclerosis screening method. Cholesterol content in the epidermis of the skin is an early biomarker for atherosclerosis. Risk assessment of atherosclerosis can be achieved by measuring cholesterol in the epidermis.

View Article and Find Full Text PDF

Background: Lipid management is the first line of treatment for decreasing the incidence of cardiovascular events in patients with coronary heart disease (CHD), and a variety of indicators are used to evaluate lipid management. This work analyses the differences in LDL-C and apoB for lipid management evaluation, as well as explores the feasibility of skin cholesterol as a marker that can be measured non-invasively for lipid management.

Methods: The prospective study enrolled 121 patients who had been diagnosed with acute coronary syndrome (ACS) at the department of emergency medicine of the First Affiliated Hospital of the USTC from May 2020 to January 2021, and the patients were grouped into Group I (n=53) and Group II (n=68) according to whether they had comorbid hyperlipidemia and/or diabetes mellitus.

View Article and Find Full Text PDF

Background: Establishing a high-accuracy and non-invasive method is essential for evaluating cardiovascular disease. Skin cholesterol is a novel marker for assessing the risk of atherosclerosis and can be used as an independent risk factor of early assessment of atherosclerotic risk.

Methods: We propose a non-invasive skin cholesterol detection method based on absorption spectroscopy.

View Article and Find Full Text PDF

The identification of biomarkers of Alzheimer's disease (AD) is an important and urgent area of study, not only to aid in the early diagnosis of AD, but also to evaluate potentially new anti-AD drugs. The aim of this study was to explore cofilin 2 in serum as a novel biomarker for AD. The upregulation was observed in AD patients and different AD animal models compared to the controls, as well as in AD cell models.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of moesin protein in pancreatic cancer, focusing on its relationship with disease stage, nerve infiltration, tumor location, and pain severity.
  • It involved analyzing tissue samples from 43 pancreatic cancer patients to measure moesin expression levels using techniques like qPCR and Western blotting, while also assessing inflammatory markers via ELISA.
  • Results showed that moesin is significantly higher in cancer tissues compared to adjacent tissues and is linked to more advanced stages of cancer, greater nerve infiltration, and specific tumor locations, suggesting its potential involvement in cancer progression.
View Article and Find Full Text PDF

In order to reduce the influence of scattering and absorption on tissue fluorescence spectra, after tissue fluorescence and diffuse reflectance in different tissue optical properties were simulated by the Monte Carlo method, a tissue intrinsic fluorescence recovering algorithm making use of diffuse reflectance spectrum was developed. The empirical parameters in the tissue intrinsic fluorescence recovering algorithm were coded as a particle in the solution domain, the classification performance was defined as the fitness, and then a particle swarm optimization (PSO) algorithm was established for empirical parameters optimization. The skin autofluorescence and diffuse reflectance spectra of 327 subjects were collected in Anhui Provincial Hospital.

View Article and Find Full Text PDF

Various types of chronic diseases (CD) are the leading causes of disability and death worldwide. While those diseases are chronic in nature, accurate and timely clinical decision making is critically required. Current diagnosis procedures are often lengthy and costly, which present a major bottleneck for effective CD healthcare.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) and cancer are two leading causes of death worldwide. CVD and cancer share risk factors such as obesity and diabetes mellitus and have common diagnostic biomarkers such as interleukin-6 and C-reactive protein. Thus, timely and accurate diagnosis of these two correlated diseases is of high interest to both the research and healthcare communities.

View Article and Find Full Text PDF

Traditional diagnostic tests for chronic diseases are expensive and require a specialized laboratory, therefore limiting their use for point-of-care (PoC) testing. To address this gap, we developed a method for rapid and low-cost C-reactive protein (CRP) detection from blood by integrating a paper-based microfluidic immunoassay with a smartphone (CRP-Chip). We chose CRP for this initial development because it is a strong biomarker of prognosis in chronic heart and kidney disease.

View Article and Find Full Text PDF

Due to the urgent need for noninvasive detection of skin cholesterol, a portable, intelligent and real-time skin diffuse reflectance spectroscopy measurement system was designed based on a micro-spectrometer. Digitonin-horseradish peroxidase copolymer solution was prepared. According to the properties digitonin binds to the hydroxy of cholesterol molecular specifically and the horseradish peroxidase reacts with TMB color solution (the main component is 3,3’,5,5’-tetramethylbenzidine ) a color change was produced, by which the skin cholesterol was identified and instructed with high sensitivity and high specificity, and the concentration of skin cholesterol was quantified by measuring the degree of color change.

View Article and Find Full Text PDF

Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm.

View Article and Find Full Text PDF